

### Scaling up laboratory-to-mesocosm studies: Applications beyond engineered nanomaterials



Mélanie Auffan, auffan@cerege.fr



### Environmental risk assessment of ENMs

### Multiple decision tree (DT)-based approach...



adapted from Tolaymat et al. 2015



### Environmental risk assessment of ENMs

### Risk = Exposure x Hazard





### Environmental risk assessment of ENMs

... versus a Single decision-based approach









### Selection of relevant exposure scenarii

Contaminants



Environmental aquatic/terrestrial ecosystems (Pond, river, estuary, seawater, soils...)



One shot vs. multiple/chronic contaminations

Mid-term / Longterm exposure



Dose (Predicted environmental concentrations)



### Mesocosm designs used for ERA of ENMs





EU SOP, 2017





### Can we detect them ?

[ENMs]<sub>PEC</sub> : ng/L, ug/L to mg/L

### (bio)distribution ?

X-ray nanotomography





2D chemical mapping



Modeling





### Ex : release of nanoW during tokamak operation and maintenance



- 1.5 month
- 0.75 mg/L W(0)
- Pond



Ouaksel et al. (in revision)



### Ex : release of nanoW during tokamak operation and maintenance



>15 years of exposure and hazard data obtained in mesocosms exposed to ENMs



- nanoCeO<sub>2</sub>
- nanoAg
- nanoTiO<sub>2</sub>
- nanoCuO
- nanoW
- CNT
- ···· with tuned surface and bulk properties

## >15 years of exposure and hazard data obtained in mesocosms exposed to ENMs





### ERA of nanoparticles released from materials





Masion, et al. 2019



### ERA of nanoparticles released from materials



Masion, et al. 2019



## Ex : Advanced outdoor nano-based paint with enhanced radiation efficiency

**Paint application** 



SbD reflective mixed metal oxide ENMs





allios

Carboni et al. (in prep) H2020 SABYNA



## Ex : Advanced outdoor nano-based paint with enhanced radiation efficiency



Carboni et al. (in prep) H2020 SABYNA



## Ex : Advanced outdoor nano-based paint with enhanced radiation efficiency

7

14

Time (d)

21

28



а

Carboni et al. (in prep) H2020 SABYNA



### A robust testing procedure

### ...adaptable to multiple exposure scenarios that produce dependable exposure and hazard data



Jeliazkova et al. 2015

### Reusability

Role of multiple parameters (e.g. scenario exposure, ENM properties, mesocosms design...) on the short- and mid-term partitioning and effects of ENMs in aquatic ecosystems



Nassar et al. 2021





# What are the most critical challenges in mesocosm research and how can we overcome them ?



Climate change



Environmental transition