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Exhaust vs. wear emissions
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New Euro 7 legilslation
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battery durability (Euro 7) and repealing Regulations (EC) No 715/2007 and (EC) No
595/2009
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Euro 7: Council adopts new rules on emission
limits for cars, vans and trucks

The Council has today adopted the Euro 7 regulation, which lays down rules on [ ]
emission limits for road vehicles and battery durability. This is the last step in the s ]
decision-making procedure.

The text adopted today covers cars, vans and heavy-duty vehicles in one single legal
act and aims to further lower air pollutant emissions from exhaust fumes and brakes.
The new regulation also establishes stricter lifetime requirements.

https://www.consilium.europa.eu/en/press/press-
releases/2024/04/12/euro-7-council-adopts—-new-
rules-on-emission-limits-for-cars-vans-and-
trucks/



New Euro 7 legilslation

Table 2: Euro 7 exhaust emission limits for M2, Ms, N2 and N3 vehicles with internal combustion engine and internal combustion engines used
in those vehicles

Pollutant emissions Cold emissions Hot emissions? Emission budget for all trips Optional idle emission
’ T less than 3*WHTC long limits*
per kWh per kWh per kWh per hour
NOx in mg 350 90 150 5000
PMin | Table 4: Euro 7 brake particle emission limits in standard driving cycle applying until 31/12/2034
PNwin Emission limits in mg/km per vehicle Mz, N1 vehicles M2, Ms vehicles N2, N3 vehicles
COin1 . . .
Brake particle emissions (PMaio) 7
NMOG
Brake particle emissions (PN)
NH: in
CH. i Table S: Euro 7 brake particle emission limits in applying from 1/1/2035
H41n
N:O in Emiss I'able 6: Euro 7 tyre abrasion rate limits
Brake | Tyre mass lost in g/1000 km C1 tyres C2 tyres C3 tyres
Brake | Normal tyres

Snow tyres

Special use tyres




Exhaust emissions

Laboratory Real Drive Emissions
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Brake wear emissions
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Tire wear emilissions
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Figure 11. Test setup for the analysis of abrasion rate and PM emission factors on the single-roller
test bench.

D. Hesse et al., Atmosphere 13: 1262, 2022
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Tire wear emission factors

Table 1
Emission factors of tyre wear for different vehide types (mg/vehiclke km).

Table 3. Calculated tire wear emission factors for the summer and winter samples with uncertainty.

"Te 39 UYOSTK

Vehidle type Eulh,j‘:' rﬂ:fji Highways - Reference Values calculated from method detection limits are shown in bold font.
Light duty vehides* 5 EPA (1995)
;‘:ﬁ:;ﬁ:‘;”""'“"‘ ::;a Refrmace yeor 1005 Sample Surface Tire Wear Emission Factor (mg km~—! veh—1)
C/') Passenger car 345 CEPMEIF (20207 pl DG 1 3 :l: O 3 « 10_1
Light duty vehide® 45 . . N
Q Heavy duty vehicle® 1856 -1
. - Pd:fisl‘l::“rllgll.:lrlﬁrlh - 53 Gebbe and Hartung (1997) 22 DG 20+05x 102
- Van 107 3.1 AR 4+1x10-
Bus 344
5 0 oy 9 32 AR 2£05 x 102
T 1092
(9'. a F::sungl:r cart 61 Rauterberg-Wulff (1998) 41 AR 22+0.5 x 10_1
lorry? 12 -1
QJ (::))_‘ Passenger car Mean: 100; range: 40-360°  Luhana et al. (2004) 4'2 AR 1'6 :t 0'4 x 102
b 749 —
| Passenger car Mean: 90; range: 53-200 Hillenbrand et al. (2005) 5'1 DG 4 :t 1 x 10 2
tlj Uj Van/lorry Mean: 700; range: 5.2 DG 6 :IZ ]. * ].O_
50 s 700 (ke . B 2405 x 102
E (I;'- Truck Mean: 12 ' ' 2 4 0'5 % 10—2
S H e 9 AVerage emlsslons per car per 1102
QO W Car 50 2
S Q0 Bus _ 700 ' 3+0.8x10
D5 e year approxlmately 50 g 12403 x 107
Passenger @ar i3 , 1'8 j: 0'4 ® 10—
~ ligh erdal 51
a0 Ehaml (assuming 4 mg/km, 12,500 km/year) 451x102
Mot s peafied? 24-7 FANED CT AL T 201337
oot Pﬂst-l:-gl:r”;dr’ 8.8 G8 58 NAEI (2017) 11.1 AR 3+0.6 x 1072
Motorcycle® g 29 25 11 2 AR 5 + 1 % 10_2
Moped* 38 - - - 3
; Q; Light duty vehide? 14 .]] ‘.J.] 121 DG 4409 x ‘]_0—2
Heavy duty vehicle* 47 ol 31
~J - Bus coach® P3| 17 14 12.2 DG 5+1x10°2
(06] Passenger car” 132 85 104 DELTARES and TNO (2016) _
: . Wi DG 34+0.6 x1072
N Motorcycle G0 38 47
Moped” 13 L] 10 -2
W \-'dr:-!' 159 102 125 W2 AR 1 :l: 0'2 X 10
lorny® 850 546 668 W3 DG 54+1x103
Truck® 658 423 517
Bus® 415 267 326 —
Light spedal vehide® 159 102 125 W4 DG 6 + 1 X 10 3
Heavy special vehicke™ 850 546 668 5
Unit: mgAvehicde km indudes the vehide-specific number of tymes. WS AR 3=+ 0'6 X 10
4 Emission factors excdusively for fine airborne particulates (PM10)
B Emission factors exclusively for coarse particulates, W6 AR 34+ 0.7 X 10_2

© Compiled by luhana et al. (2004) from literature,
? Measured by Luhana et al (2004 ).

DG - Diamond ground concrete,

AR — Asphalt rubber
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Relevance of wear particles
from traffic

Source

Env. compartiment

Env. fate
Impact

Emissions
of TRWP
generated
on roads*

Baensch-Batruschat et al., Sci. Total Environ. 763: 137823
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https://doi.org/10.1016/j.scitotenv.2023.163561
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can quantify mg
Tire Wear
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Tire morkers were quantified
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wear and flares samples are

o No significant
difference 1n tire

wear PM for | 3 © e,
different surface Soua e

types (asphalt vs.
diamond grind
concrete)

O But higher emission
rates 1n summer
than winter
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Figure 31. etting



Tire wear
quantified 1in
sampled PMI10
using
benzothiazoles

(vulcanization
accelerators)
as tire
markers
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Brakes & other vehicle components
produce “magnetic dust” & 1s of
rising global concerns

H,0,
a6 > * OH (Oxidative stress)
Fe.O | Peroxidase-like
3 activity?

Magnetic dust
nanoparticles
<200 nm

Long, X., Luo, Y. H., Zhang, Z., Zheng, C., Zeng, C., Bi, Y., ... & Westerhoff, P. (2020). The nature and oxidative reactivity of urban magnetic nanoparticle dust provide new
insights into potential neurotoxicity studies. Environmental Science & Technology, 54(17), 10599-10609.



Collection of magnetic dust

* Collect dust from the ground of the Rural Road Parking Structure.

* Gently grind the dust and sieve the dust using a 53-um nylon mesh
sieve.




Intensity

Heterogeneous crystallinity

A Elemental iron (Fe?)

—Magnetite nanoparticles

A

20 (°)

Magnetic dust particles

90

® Magnetite (Fe;0,)

Nano Zero Valent lron

XRD confirms the
presence of ~40%
metallic iron (Fe®) and
60% of magnetite
(Fe;0,).

“ Not exclusively Fe,O,



Heterogeneilty in single-particle level

Magnetite

Intensity

* No oxygen signal
(~532 ev) was found
In EELS.

* The presence of Fe

and the absence of
O confirm Fe’



Also collected “airborne” Particles

Filter removal

l
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PM2.5 sample was collected onto a cellulose filter at Tyler Street Parking Garage
Extract particles from the cellulose filter by sonication in pure ethanol

Pass the extract solution through a 0.45-um PTFE filter

The filtrate solution was used for STEM-EDX and bulk-level ICP-MS analysis



Frequency

Particle size after passing a 0.45-um filter

How does the particle size enhance our understanding of the bulk-level ICP-MS?
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Heterogenous particle morphology

Aspect ratio (AR) for a particle = longest length/smallest length
Map Data 337“ toumn 23

~ 50om |
Rod shape: AR>5 Agglomerate: AR 1~2

Near-round shape: AR 1~1.5




Heterogeneous Fe speciation of magnetic dust identified by EDX

Operative

 Iron and oxygen quantified by EDX in
atomic percentage to study the

heterogeneity in Fe speciation
Map Data 106 At%

« 481 magnetic dust
particles were
classified into 4
groups (Method

resented in RQ2)

a 195

Major elements in the
group (up to 5), at%

name of
particle group

Particle Relative

abundance (%) Aspect ratio

73.4 Fe, 23.70, 1.9 Si,

Fe-O-Si-Ca-Al ™ 05 102 Al

61.9 O, 22.0 Fe, 8.2 Si,

O-Fe-Si-Ca-Al 5 /o 1d 23 Al

O-Sb-S-Si-Fe = s o 16.0 Fe

54.8 O, 36.0 Al, 4.0 Fe,

0O-Al-Fe-Si-Ca 3.6 Siand 0.8 Ca

374 0,283 Sb, 17.9 S,

3.1 342
96.5 1.6+08"
0.2 1.6
0.2 1.4

Metallic iron (Fe®) and iron oxides
are separated into different

groups.



Heterogeneous elemental composition at single-particle level

Match all particles to the dendrogram

 Particles of similar elemental composition are clustered together

« Enable the study of heterogeneity in elemental composition for each particle group.
100 v ' ST
90 '

80 |
70 |

60
50
40

30 Fe

20

10 \ ) | "
N Si Si S] l
Particle number (from 1 to 400)

m Si mFe m Al O mCu Other elements

Elemental percentage (wt%)




How can this heterogeneity affect ROS generation?

Magnetic Dust Other peroxidase-like
Particle components (e.g. Cu)
2H,0 + O,
2+
Catalase-like Reaction 2 Cu™ =
»— Fe
2H,0
2-2 4 Fe** Reduction
HO+ H*  OH-+HO
Fenton-like Reactions Fenton-like Reactions
OH-+ HO* H,0, H,0, HO, +H*
| Fe3+ Cu2+ ]
F --------------------------- I

I Generation of ROS (including H,0,, HO and HO, ) |

Ascorbic
Acid (AA)

'H+l

Ascorbate (AscH-)

- 2e
-H*

Dehydroascorbic acid
(DHS) + products of ROS
reduction (e.g. H,0)

Reduction of Oxidants by Ascorbic Acid



ROS generated by the heterogeneous magnetic dust

0 Blank —Expon. (Blank)  Pure magnetite does not generate ROS.
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FCotoxicity
of tire- |
and break- - —

chemicals, compounds, and As tires wear and degrade,
materials that can become pollutants particles and associated

W e a I | - when released to the environment. contaminants are emitted.

N

-
e

particles T ol N

; Y
MITIGATION NS \

Comprehensive clean-up )
and risk reduction REUSE & DISPOSAL N
i Worn tires are recycled for \

solutions are needed.
other purposes, or disposed

properly or improperly.

E CcO t OX j_ C j_ t y : | ’}l A | , Ve | FATE &TRANSPO_RT

Particles and associated
contaminants are transported

N , RN
C O R 7 ) : through terrestrial, aerial, and

Populations of sensitive species, . aquatic routes. Rain washes many
including humans, are exposed to & ot pollutants into waterbodies.
tire particles and/or chemicals. = ' - - I

Olga Tsyusko
University of
Kentucky
Lexington, KY,

https://doi.org/10.1016/].scitotenv.2024.171153
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ELSEVIER Y.

Toxicity of micro and nano tire particles and
leachate for model freshwater organisms

Brittany Cunningham ©, Bryan Harper ¢, Susanne Brander P, Stacey Harper @ ¢ & X
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aquatic research
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ELSEVIER
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Effects of oral exposure to brake wear
particulate matter on the springtail
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P. subcapitata-BWPM
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Interactive
Exercise

* Drawling on our unique strengths and
expertise 1n engineered and
incidental nanomaterials, what
actions do you think would be worth
pursulng 1n order to scale-up
research on the tire-wear and
break-wear to more complex systems?

* Solo (5 min): Please 1dentify 1-2
key action(s) and write 1t down on
a sticky note

* Share with the partner next to you
— 10 min

* Share several with the group



Prompt
Question #Z2

CONGRATULATIONS

Your team was awarded 1

Million (USD or EU) to

split between US and EU
research

What would you be able
to do to advance our
understanding of
brake/tire wear
incidental nanomaterials

A 7 7 I Y A



Interactive Exerclse (can
start with this one)

 Where are the most critical challenges and research gaps in mesocosm research?

1. Solo: Please identify 1-2 main gap(s) and write it down on a sticky note -5 min
2. Share with the partner next to you — 10 min

3. Share with the group -10 min



Potential questions for
discussion (optional)

* Given the research gaps identified, what new research would be truly novel and
valuable?

* Do you think research in mesocosms can predict ecosystem effects?



