

Current State of NanoEHS – an overview

Vicki Stone v.stone@hw.ac.uk

HERIOT WATT UNIVERSITY WG C: Exposure & Hazard assessment Progress made 2014-2017

HERIOT WATT UNIVERSITY WG C: Exposure & Hazard assessment Future perspectives

Exposure assessment

ISO standard proactive approach

NOAA in

Stoffenmanager-nano (retroactive approach)

Nat is Nanocentre

Heeft u vragen?

PATROLS

solid matrix

Manufacturing

Use exposure

processes

Tler 1

Tier 2

Tier 2a

Tier 3

Tier 1a

- Match with stakeholder needs
 - Workshops/webinars with / for industry
- Networking & Harmonisation
 - Joint project workshops
- Databases and data management
 - Harmonised collection and storage
 - Open access

ANNOUNCEMENT 1: seeking input Workshop on harmonization of standard operating procedu A joined PATROLS - <u>Nanosafety</u> Cluster event (WG C)

tion in both a legal an

NOAA in

llauld

NOAA

powder

for SafeNano

Hazard assessment

ISO hazard bands

EC4SafeNano

opean Centre for Risk Managem ovation in Nanomaterials & Nan

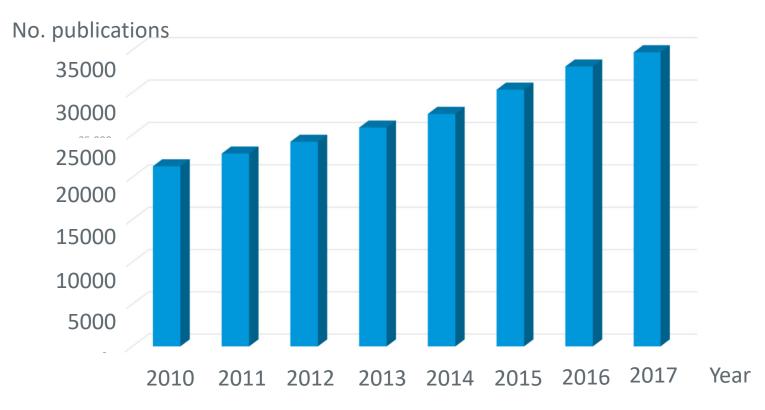
NRV

Bulk OEL

NANOSTREEM

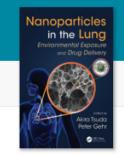
▲I▲caLIBRAte

nano risk governance


• Innovative methods for exposure & hazard testing

(Nanomaterial or Nanoparticle) + (Hazard or Toxicity)

All years 501 190 papers


Approx. 1600 per year increase

Publication patterns –gap analysis - 2013ITS-NANO

Biological impart						
Biokinetics	Cytotoxicity	Inflammation	Ox. stress	Fibrosis	Genotox	Carcinogenicity
381	250	543	207	44	45	246
76	28	39	19	3	6	23
52	19	79	21	4	2	16
54	20	47	32	2	3	18
29	21	29	12	2	5	19
30	9	17	6	1	1	4
138	84	219	83	18	10	60
5	1	6	1	1	2	1
23	23	47	20	4	3	11
	381 76 52 54 29 30 138 5	381 250 76 28 52 19 54 20 29 21 30 9 138 84 5 1	Biokinetics Cytotoxicity Inflammation 381 250 543 76 28 39 52 19 79 54 20 47 29 21 29 30 9 17 138 84 219 5 1 6	Biokinetics Cytotoxicity Inflammation Ox. stress 381 250 543 207 76 28 39 19 52 19 79 21 54 20 47 32 29 21 29 12 30 9 17 6 138 84 219 83 5 1 6 1	Biokinetics Cytotoxicity Inflammation Ox. stress Fibrosis 381 250 543 207 44 76 28 39 19 3 52 19 79 21 4 54 20 47 32 2 29 21 29 12 2 30 9 17 6 1 138 84 219 83 18 5 1 6 1 1	BiokineticsCytotoxicityInflammationOx. stressFibrosisGenotox3812505432074444576283919365219792142542047322329212912253091761113884219831810516121

< Back to book

Nanoparticles in the Lung

Environmental Exposure and Drug Delivery

Edited By Akira Tsuda, Peter Gehr

Chapter 20

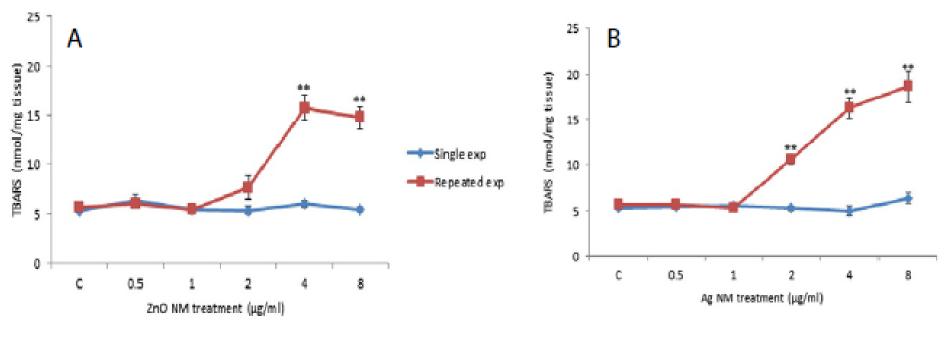
Nanotoxicology

By Dominique Balharry, Eva Gubbins, Helinor Johnston, Ali Kermanizadeh, Vicki Stone Long-term studies missing

HERIOT Why are long term studies missing?

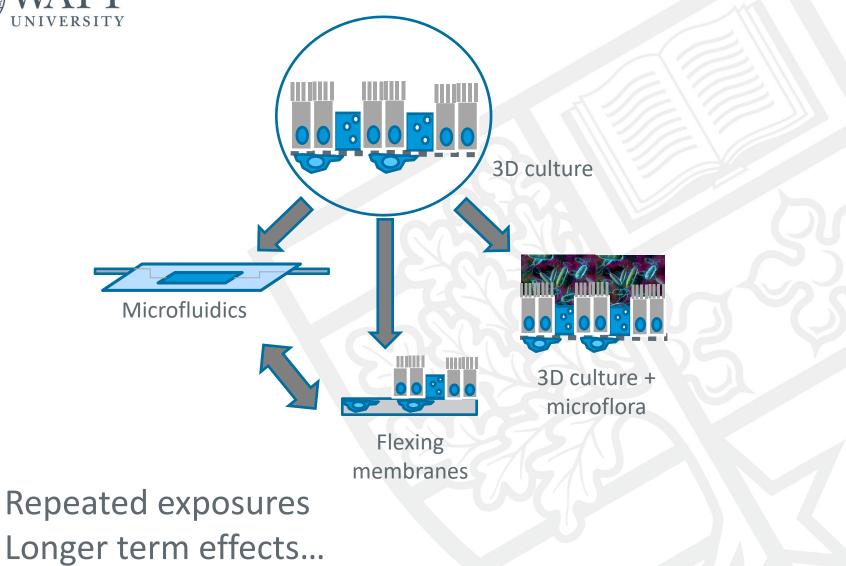
- Usually conducted *in vivo*, using lots of animals and cost lots of money.
- Need to identify longer-term models and assays for *in vitro* study
- Jacobson et al. (NRCWE) Repeated exposure to cells in culture in order to measure genotoxicity
- Kermanizadeh et al. (HWU) Used protocol of Nicklas to treat 3D liver microtissues in vitro with nanomaterials up to 7 days
- Patrols will take this to 21 days for 3D lung and 3D Liver, and 5 days for 3D GIT

Kermanizadeh et al. Particle and Fibre Toxicology 2014, 11:56 http://www.particleandfibretoxicology.com/content/11/1/56


RESEARCH

Open Access

Hepatic toxicology following single and multiple exposure of engineered nanomaterials utilising a novel primary human 3D liver microtissue model

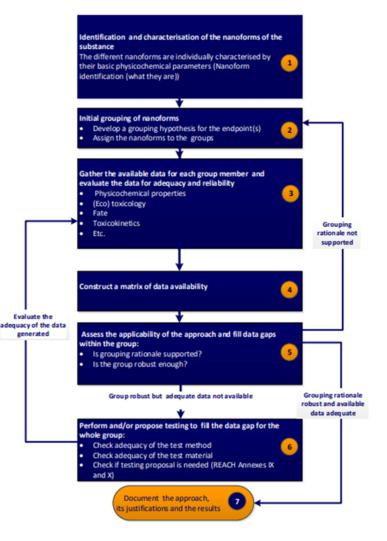

Ali Kermanizadeh^{1,2*}, Mille Løhr¹, Martin Roursgaard¹, Simon Messner³, Patrina Gunness³, Jens M Kelm³, Peter Møller¹, Vicki Stone² and Steffen Loft¹

Repeated exposure = 7 days

GRACIOUS Grouping Framework

- Aim GRACIOUS Framework: support practical application of grouping of nanomaterials/nanoforms (NFs)
- Potential applications:
 - To facilitate targeted testing or targeted risk assessment
 - To fill a data gap in a regulatory dossier
 - To develop precautionary measures
 - To steer safe innovation/safe-by-design
 - To advance understanding of scientific mechanisms

Project Overview


About Gracious

Development of a highly innovative science-based framework that supports the grouping and read-across of nanomaterials on the market and under development.

ECHA Guidance on Grouping suggests that Grouping should be Hypothesis driven.

https://echa.europa.eu/documents/10162/ 23036412/appendix_r6_nanomaterials_en .pdf

Project Overview

About Gracious

Development of a h innovative scienceframework that sup grouping and readnanomaterials on the market and under development.

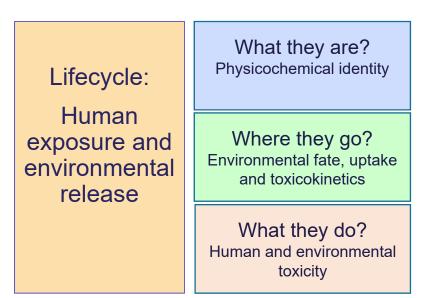
ECHA Guidance on Grouping suggests that Grouping should be Hypothesis driven.

https://echa.europa.eu/documents/10162/ 23036412/appendix_r6_nanomaterials_en .pdf

Identification and characterisation of the nanoforms of the substance The different nanoforms are individually characterised by

The different nanoforms are individually characterised by their basic physicochemical parameters (Nanoform identification (what they are))

Develop a grouping hypothesis for the endpoint(s) Assign the nanoforms to the groups Physicochemical properties (Eco) toxicology Fate Toxicokinetics Groupin rationale not Etc. onstruct a matrix of data availability Evaluate the adequacy of the data generated Assess the applicability of the approach and fill data gaps vithin the group: Is grouping rationale supported? Is the group robust enough? adequate data not available Grouping rationale robust and available data adequate orm and/or propose testing to fill the data gap for the tole group: Check adequacy of the test method Check adequacy of the test material Check if testing proposal is needed (REACH Annexes IX Document the approach, iustifications and the results



GRACIOUS framework –

Hypotheses Generated via knowledge and gap analysis

- 16 human health covering inhalation, ingestion & dermal routes of exposure
- 7 environmental covering water, sediments, soil and air
- Each hypothesis supported by tables summarising evidence from peer reviewed sources in order to judge the strength of each hypothesis
- 4 hypotheses with clear implications identified
 - DISS
 - HARN
 - D5NM
 - SNEP

Initial Overall Hypothesis example

Purpose: Targeted testing, regulatory, safe-by-design, precautionary

a second se

Context: Occupational, consumer, environmental

Input from life cycle	What they are?
Exposure during production of NM or	
incorporation into other products or use of NM containing products	Where they go?
Type of Exposure	Context dependent: inhalation, ingestion, dermal deposition
Workplace atmosphere, outdoors	Water, soil, aquatic and terrestrial organisms
atmosphere, water, soil as waste	NM will dissolve quickly after uptake and distribute similar to ions of
Level of exposure	the same chemical composition released from non-nanomaterials
Context dependent	What they do?
	Toxicity of those NMs will be determined based on the ion toxicity, expect hazards similar to those of ions (as identified by GHS/CLP)

Potential implications:

If in group:

<u>Regulatory</u>: develop read-across argument on hazard based on ionic composition and know toxicity for regulatory use (Tier 2).

<u>Targeted testing</u>: focus on location of ion release as toxicity can probably be predicted based on dissolution rate, location of ion release and the toxicity of the released ions

at valages lags taxis is a surger an usual disculution to prevent

Initial Overall Hypothesis example

datame aafa hu cor NM with a high dissolution rate. Inp Exp Context dependent: inhalation, ingestion, dermal incc deposition NM Water, soil, aquatic and terrestrial organisms Typ Wo ns of atm NM will dissolve quickly after uptake and distribute similar S l ev cor to ions of the same chemical composition. cicity P) Pot Toxicity of those NMs will be determined based on the ion If in toxicity, expect hazards similar to those of ions. Regulatory: develop read-across argument on hazard based on ionic composition and know toxicity for regulatory use (Tier 2). Targeted testing: focus on location of ion release as toxicity can probably be predicted based on dissolution rate, location of ion release and the toxicity of the released ions

Human Inhalation Hypothesis example

Purpose: Precautionary, safe-by-design, regulatory, targeted testing

Context: Occupational, inhalation study

Input from life cycle	What they are?	
Generated as a respirable aeroso	High aspect ratio, rigid NM with low dissolution rate and	
during production or use	aerodynamic diameter to allow deposition in the distal lung	
Type of exposure	Where they go?	
Workplace atmosphere	A small proportion of HARN deposited in the distal lung (~ 1%)	
Inhalation exposure	will translocate to the pleural cavity. Fibres $\ge 5 \ \mu m$ in length will	
Level of exposure	be retained in the pleural cavity due to size-restricted	
Moderate, short peak exposure during	clearance through stomata in the chest wall and diaphragm.	
handling dry powde		
(e.g. bagging, pouring, weighing	Cause individued phagocytosis as piculai inaciophages	
spraying)	attempt to remove them and result in chronic inflammation,	
	mesothelial cell proliferation, fibrosis and, overtime, mesothelioma	

Potential implications:

If in group:

Regulatory: develop read-across argument on hazard for regulatory use and compare to relevant

Human Inhalation Hypothesis example

and

1%)

will

:ted

ges

ion.

me.

Purpose: Precautionary, safe-by-design, regulatory, targeted testing C High aspect ratio, rigid NM with low dissolution rate and aerodynamic diameter to allow deposition in the distal du lung. T W A small proportion of HARN deposited (approx. 1%) will In translocate to the pleural cavity. Fibres > 5um in length will be retained in the pleural M ha cavity.... (e sp Cause frustrated phagocytosis... result in chronic inflammation, mesothelial proliferation, fibrosis and mesothelioma If myroup.

Regulatory: develop read-across argument on hazard for regulatory use and compare to relevant

Human Dermal Hypothesis example

Purpose: Regulatory

Context: Consumer, occupational

INMut from life cycle	What they are?
NMs incorporated into a consumer product	
applied to the skin (e.g. personal care products, cosmetics, sunscreens)	Where they go?
Type of exposure	When reaching healthy skin, will not penetrate the stratum corneum,
Exposure to NMs in an occupational	and will not permeate skin to access systemic circulation in a
setting	proportion larger than 0.1% of the external dose
Dermal exposure	What they do?
	Will not cause particle/nano specific toxicity

Potential implications:

If in group:

<u>Regulatory</u>: conclude no systemic exposure to NM which may lead exposure-based waiving of testing for systemic toxicity (there could be exposure to ions if they dissolve).

If not in group: Consider alternative hypothesis (systemic exposure to NM cannot be excluded).

Human Dermal Hypothesis example

Purpose: Regulatory Context: Consumer. occupational NMs > 5nm that are not flexible. When reaching healthy skin, will not penetrate the stratum corneum and will not ... access systemic circulation in a proportion larger than 0.1% of the external dose.

^{Pc} Will not cause particle/nano specific toxicity.

<u>Regulatory</u>: conclude no systemic exposure to NM which may lead exposure-based waiving of testing for systemic toxicity (there could be exposure to ions if they dissolve).

If not in group: Consider alternative hypothesis (systemic exposure to NM cannot be excluded).

Solid matrix nano-enabled product

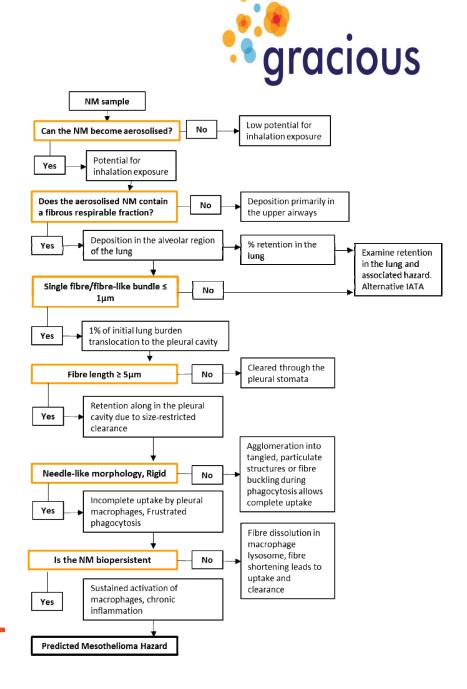
Group description and	Potential	Relevant testing	
hypothesis	implications/consequences	(in IATA where appropriate)	
NFs which are incorporated	Precautionary approaches or	 Incorporation of NF into 	
into a solid matrix (SNEP):	safe-by-design:	the matrix of the NEP (g/g	
NF will be released as free NF	Control-banding (Level 1),	content, disperse state)	
	minimize exposure or adjustment of NEP.	 Resilience of matrix under relevant conditions 	

 $_{Th}^{SC}$ NFs incorporated into a solid matrix.

rel

^{by} The probability and form of release is mainly determined dis_{dis}^{dis} by the type of matrix, dispersion state of the NF in the <u>prc</u> matrix and use or aging process.

HARN	Description	PC	Model	Endpoints	Results	Ref
	of panel					
MWCNT	MWCNT Mitsui- 7	Length Diameter Contamination	C57BL/6J mice were exposed by pharyngeal aspiration to 10, 20, 40 and 80 μg MWCNT	Morphometric methods were used to determine the distribution of MWCNT and the number of MWCNT fibre penetrations of three barriers: alveolar epithelium (alveolar penetrations), the alveolar epithelium immediately adjacent to the pleura (subpleural tissue), and visceral pleural surface (intrapleural space) at 1, 7, 28 and 56 d after exposure.	At 1 day 18%, 81.6% and 0.6% of the MWCNT lung burden was in the airway, the alveolar, and the subpleural regions, respectively. The density of penetrations increased to steady state levels in the subpleural tissue and intrapleural from day 28 - 56. At day 56 approximately 1 in every 400 fibre penetrations was in either the subpleural tissue or intrapleural space.	(Mercer, Hubbs e al. 2010


>18 further references included in justification table

Integrated Approaches to Testing and Assessment

- Tiered streamlined approach to testing
- Spanning
 - physicochemical characteristics,
 - Data mining and *in silico* tools
 - Release and exposure assessment
 - Simple in vitro screening assays
 - Complex physiologically relevant in vitro models
 - In vivo (vertebrate and invertebrate) assessment
- Tailored via Grouping approaches

Integrated Approaches to Testing and Assessment

- The IATA format uses the format suggested by OECD
- Each IATA design is 'science based' and tailored to the specific hypothesis
- Allows identification of SOPs for each endpoint assessed
 - OECD, ISO, published

- Omics approaches allow identification of mechanisms of action or adverse outcome pathways
- They therefore allow identification of biomarker targets for assessing hazard or efficacy
- The cost is coming down
- Large data sets generated
- Not yet a screening tool, more a guiding tool for identification of relevant endpoints to screen

- Long term studies are required in order to inform risk assessment of NMs
- In vitro models that allow longer term, repeated exposures are also needed, and are under development by PATROLS
- Up to 23 clear hypotheses identified by GRACIOUS that cover human and environmental hypotheses
- Only 4 of these can be considered, confident, well justified or with clear consequences.
- Hypotheses however are sufficient to allow generation of IATA's that allow the hypotheses to be tested.
- The IATA's currently consist of a mixture of OECD, ISO and published protocols – but gaps exist.
- Omics can inform endpoint identification.

Integrated Risk Management Framework for nano(bio)materials used in medical devices and advanced therapy medicinal products

- Develop an Integrated Risk Management (IRM)
 Framework.
- Provide ready-to-use **<u>Risk Management toolbox.</u>**
- Provide <u>Decision Support System</u>, using validated tools and methods for materials, exposure, hazard and risk.
- **Scientific rationale** for selection.
- Enable <u>industries and regulators</u> to use tools for high-quality data and informed decision-making framework.

1st BIORIMA Stakeholder Workshop

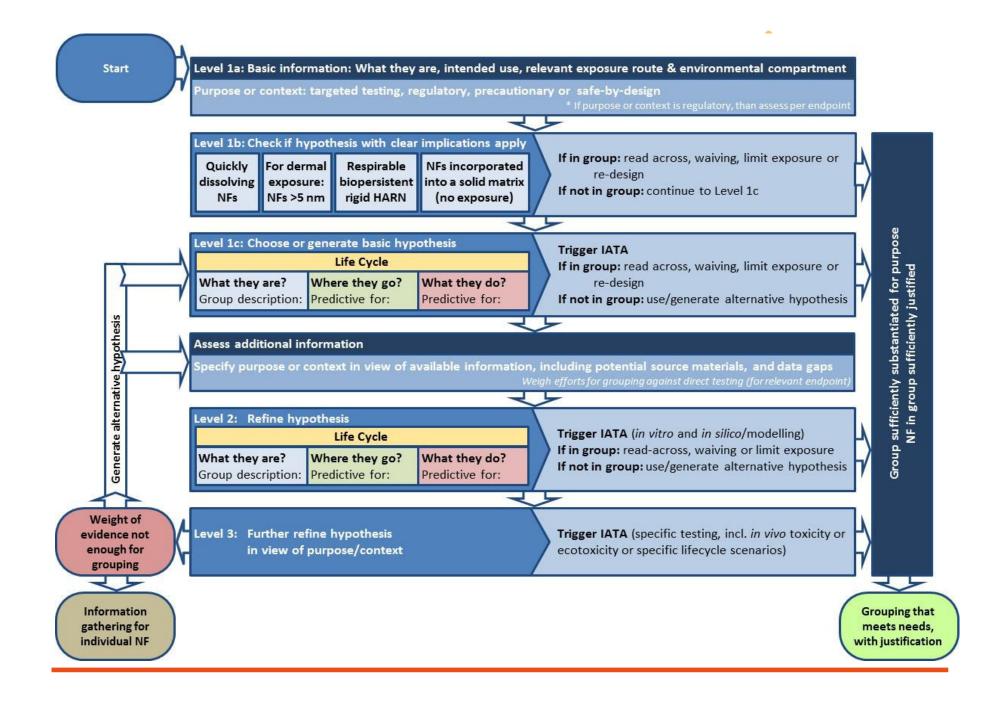
6 November 2018 in Valencia, Spain

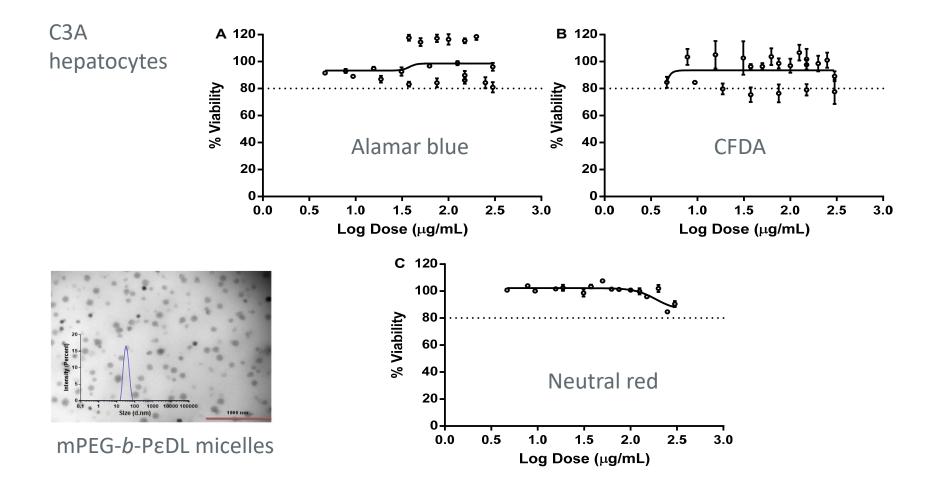
REGISTER NOW

www.biorima.eu info@biorima.eu

Special thanks:

Araceli Sanchez Socorro Vazquez-Campos Wendel Wohlleben Helinor Johnston Eric Bleeker Dominique Balharry




v.stone@hw.ac.uk

Thank You

HERIOT Development of ε-decalactone based nanomaterials

Hypothesis development

- General Hypotheses for grouping NM
- Human toxicokinetics
 - Inhalation rote
 - Ingestion rou
 - Dermal route
- Environmental Fat
 - Water
 - Sediment
 - Soil
 - Air

E.g. Long-term pulmonary retention of rigid, biopersistent HARN after occupational inhalation exposure will result in lung toxicity

E.g. Translocation to the pleural cavity of rigid, biopersistent HARN after occupational inhalation exposure will result in mesothelial toxicity

Grouping Hypotheses with clear implications

Group description and	Potential	Relevant testing
hypothesis	implications/consequences	(in IATA where appropriate)
Quickly dissolving NFs	Regulatory:	 Dissolution rate and
(DISS):	Read-across to the ionic or	transformation in water
NF will quickly transform to	molecular form may be	and relevant media.
the ionic or molecular form	possible (in subsequent	
and have the same fate,	Level).	
kinetic and toxicity profile as		
the ionic or molecular form.		
Scientific rationale:		
Exposure to and uptake of		
the NF is negligible.		

Grouping Hypotheses with clear implications

Group description and	Potential	Relevant testing
hypothesis	implications/consequences	(in IATA where appropriate)
Respirable biopersistent	Precautionary approaches or	 Dissolution in fluids
rigid High Aspect Ratio NFs	safe-by-design:	representative of lung
(HARN):	Prevent/minimize exposure, or	lining and lysosomal fluid.
NF will translocate to the pleural membrane and lead to frustrated phagocytosis (uptake and clearance) by macrophages (immune cells) that subsequently can cause mesothelioma (cancer of pleural cavity around lungs). <i>Scientific/clinical rationale:</i> Mesothelioma.	modify the NF/NEP to reduce hazard. <i>Targeted testing:</i> Testing to assess concerns. <i>Regulatory:</i> Read-across to asbestos (Level 1), or another rigid HARN (in subsequent Level) may be possible.	 In vitro assessment of frustrated phagocytosis. In vitro assessment of pro-inflammatory, pro-proliferative and genotoxic potential. In later tiers (if applicable): <i>in vivo</i> translocation, <i>in vivo</i> inflammation and/or mesothelial cell
		proliferation.

Grouping Hypotheses with clear implications

Group description and	Potential	Relevant testing
hypothesis	implications/consequences	(in IATA where appropriate)
NFs larger than 5 nm	Regulatory:	• Size of the NF in relevant
(D5NM):	Waiving of endpoints related to	media
NF will not translocate across skin. <i>Scientific rationale:</i> If there is no translocation across intact skin in case of dermal exposure, systemic exposure via skin will not occur.	systemic exposure.	 Translocation studies across skin (<i>in vitro</i>, <i>ex</i> <i>vivo</i>).