NIOSH’s Progress towards Developing a Categorical Approach to Nanomaterials Risk Assessment and Developing the Database

Eileen D Kuempel PhD
Risk Assessment Critical Area Coordinator, NIOSH/NTRC

2018 US-EU: Bridging NanoEHS Research Efforts Joint Workshop
Organized by the US National Nanotechnology Initiative and the European Commission
Washington, D.C., October 11, 2018

The findings and conclusions in this presentation have not been formally disseminated by the National Institute for Occupational Safety and Health and should not be construed to represent any agency determination or policy.
NIOSH Research on Engineered Nanomaterials (EMNs) Risk Assessment Program Area

Burden
- Potential occupational exposure associated with production & use of ENMs

Need
- Evidence-based risk assessments to support effective risk management recommendations

Impact
- Responsible and sustainable development of the technology – including healthy workers
Key questions:

What options are available to reduce the hazards or exposures?

How can risk assessment be used to evaluate the merits of the various options?

[NAS 2009; NAS 1983]
Risk Assessment Guidance - Relevant to Nanomaterials and Occupational Safety and Health

- Standard principles and practices apply to nanomaterials
- New methods are being developed to utilize data from alternative testing strategies

NIOSH (2017)
NIOSH/NTRC Risk Assessment Objectives

• Assessing hazard potency among well-studied materials
 – which vary in size, shape, solubility, density, functionalization, etc.

• Predicting hazard potency groups among a wide range of ENMs
 – using limited data on new ENMs in a validated framework based on well-studied materials

• Providing information for risk management decision-making
 – considering the workplace health & safety applications
NIOSH Framework to Derive Occupational Exposure Limits or Bands for ENMs

[Drew NM, Kuempel ED. Toxicology and Risk Assessment Conference, April 24, 2018, Cincinnati, Ohio]
Control Banding

Hazard Banding by Severity of Effect

Exposure Banding
Frequency, duration, & amount; energy & dustiness

Performance-based Exposure Control Limits

Airborne concentration, 8-hr TWA (μg/m³)

- Closed Systems & Robotics
- Containment Systems
- Ventilated Enclosures
- Local Exhaust Ventilation
- General Ventilation

[Also the OEB airborne concentrations]

Benefits of Categorical (Grouping) Approach

- More efficient use of data
- Reduced costs and animal use
- Increased sample size
- Greater robustness of results
- Increased biological plausibility for other materials within biological mode-of-action categories

Methods

I. Develop proof-of-concept framework for hazard potency grouping and prediction
 ✓ Completed

II. Build a more comprehensive database
 ❑ In progress

III. Extend/evaluate models/frameworks and apply in hazard grouping and OEB estimation
 ❑ In progress

Opportunities for collaboration
A quantitative framework to group nanoscale and microscale particles by hazard potency to derive occupational exposure limits: Proof of concept evaluation

Nathan M. Drew a,*, Eileen D. Kuempel a, Ying Pei b, Feng Yang b

a National Institute for Occupational Safety and Health (NIOSH), Nanotechnology Research Center (NTRC), Cincinnati, OH 45226, USA
b West Virginia University, Department of Industrial and Management System Engineering, Morgantown, WV 26506, USA

Includes data from US and EU collaborators! ENPRA, NanoGo, NIOSH and others
Physicochemical Properties for Predicting Hazard Potency

- Random forest methods used to identify the important physicochemical predictors of pulmonary toxicity
- Proof-of-concept model built with 18 materials with limited physicochemical information
- Group assignments were correctly predicted for five of six new ENMs.

[Drew et al. 2017. RTP 89:253-267]
Comparative Potency Analysis

Comparative Risk Estimate

ExR₂ = k (ExR₁)

[Kuempel et al. 2012 JNR 14:1029; adapted from Sobels 1977,1993; Schoeny & Margosches 1989; Sutter 1995]
Dose-Response Modeling

Benchmark Dose (BMD): The dose associated with the benchmark response (BMR)

BMDL: Statistical lower confidence limit on the BMD (used as the PoD)

OEL noncancer endpoint

Response

Dose

BMR: Predetermined change in response rate relative to background (e.g., added 10%)

[Adapted from U.S. EPA BMDS]
Hazard Potency Estimates and Grouping*

by Acute Inflammation (background + 4% PMNs, at 0-3 d post-exposure)

*Hierarchical Clustering used to group similar materials

[Drew et al. 2017. RTP 89:253-267]
Challenges for Data Analysis

• Large amounts of data available, yet considerable heterogeneity due to experimental design differences

• Dose-response data are often insufficient for modeling
 – Few dose groups or number of animals per group
 – Missing data for key parameters

• Obtaining comprehensive data sets with adequate dose-response and physicochemical properties data
Extending the Database

• Systematic literature review
• NIOSH toxicology studies
• Data from research collaborators
• *In vivo* and *in vitro* data
• Toxicological endpoints over time
• Early markers and gene expression
• Material characterization
Proposed Structure of NIOSH Nanotoxicology Database

- **Endpoints Table**: Individual data from each assay
 - Key: Response ID

- **Experiment Table**: In vivo/in vitro study features
 - Key: Experiment ID

- **Study Table**: Contains all studies in database
 - Key: Experiment ID
 - Key: Study ID
 - Key: Material ID

- **Assay Table**: Response assay description
 - Key: Study ID

- **Materials Table**: Physicochemical properties
 - Key: Study ID

[Similar to and compatible with ISA-TAB-Nano & other database standards]

[Figure by Theresa Boots]
Utility of Data Templates

• Standardize data format and compatible software
• Ensure inclusion of essential variables
• Simplify data entry and minimize errors
• Improve utility of nanotoxicology data for risk analyses
• Facilitate data sharing
Toxicogenomics Database Workflow

Initial Database Sources
- GEO
- EPA AcTOR
- Array Express
- NTP
- NIOSH

Identify Unique Datasets
- Compare databases, overlaps
- Evaluate results from different search terms

Select Datasets based on Inclusion Criteria
- Assay platform type
- Experimental sample type
- Relevance to engineered nanomaterials
- Relevance to risk assessment for occupational safety and health

[Medvedovic and Davidson 2017 - Toxicogenomics Database Protocol for ENMs Risk Assessment]
Exploring Differential Gene Expression and ENM Exposure

Lung Disease Model Biclusters

ENM Biclusters: Acute Inflammation

[Davidson SE, Kuempel ED, Medvedovic M (2018). Exploring the Use of Toxicogenomics in Risk Assessment of Nanomaterials. Toxicology and Risk Assessment Conference, April 24, Cincinnati, Ohio].
What's Known

- Standard risk assessment methods are generally applicable to EMNs
- Toxicology data from well-studied materials can be used as benchmarks
- Exposure measurement methods are generally available
- Engineering controls can be effective at controlling exposures
- Proof-of-concept models for hazard/safety assessment have been developed

What's Still to Know/Do

- Data integration across toxicological assays and endpoints
- Extension and validation of predictive models
- Implementation of validated frameworks to wide range of ENMs
- Further linkage of steps in risk assessment and management
Possible Areas of Research Collaboration in Risk Assessment of ENMs

• Data sharing to build a comprehensive database
• Identifying minimally acceptable data requirements
• Comparing and cross-validating methods and frameworks
• Integrating comparable data and complementary methods
• Implementing validated models for hazard/safety assessments
NIOSH Resources

• Risk Assessment Practices *Draft*
 https://www.cdc.gov/niosh/docket/review/docket316/

• Occupational Exposure Banding *Draft*
 https://www.cdc.gov/niosh/docket/archive/docket290.html

• NIOSH Current Intelligence Bulletins:
 – Silver Nanomaterials *Draft*
 https://www.cdc.gov/niosh/docket/review/docket260a/
 – Carbon Nanotubes and Nanofibers
 – Titanium Dioxide
Acknowledgements

NIOSH Project Collaborators
Nathan M. Drew, MS
Sarah E. Davidson, BS
Theresa E. Boots, MS
Randall J. Smith, MA
Jenny R. Roberts, PhD
Aleks Stefaniak, PhD
Mike Kashon, PhD

Outside NIOSH Research Collaborators
Mark Widder, BS, US Army Center for Environmental Health Research
Feng Yang, PhD, Ying Pei, MS West Virginia University
Jayne-Anne Bond, PhD, formerly ATL International, Inc.
Lang Tran, PhD, Institute of Occupational Medicine, Edinburgh
Mario Medvedovic, PhD, University of Cincinnati

NIOSH Nanotechnology Research Center (NTRC) Co-Managers & Coordinator
Charles L. Geraci, PhD, CIH
Paul A. Schulte, PhD
Laura Hodson, MS, CIH
Thank you!

ekuempel@cdc.gov

www.cdc.gov/niosh/topics/nanotech

Promoting productive workplaces through safety and health research.