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Disclaimer 
 
This roadmap has been jointly developed in trustful cooperation among scientists of the 
European Union, the United States of America and a few other countries. Scientists with 
different scientific backgrounds, working in the field of nanotechnology, have 
cooperated with the main objective to provide as broad an overview as possible about 
the young and rapidly evolving field of “nanoinformatics”. Thus, the main purpose of this 
roadmap is educational. By no means was the intention to provide all possible details. 
Instead, interested readers will find plenty of additional references mentioned in each of 
the chapters that will provide more detailed insights. 
 
The opinions expressed in this document are solely those of the authors. They do not 
necessarily represent the opinions of their respective organisations or reflect the views, 
and official policy of the respective Government such as the Department of Defence, the 
Department of the Army, the U.S. Army Medical Department or the U.S. Federal 
Government. Mention and use of product or trademark name(s) does not constitute 
endorsement but is intended only to assist the reader. 
 
The statements and opinions contained in the individual chapters are also not legally 
binding with respect to different regulatory frameworks. In particular it should be noted 
that some of the terms might be defined and used differently in the US versus the EU, 
also within different scientific disciplines and within different regulatory frameworks. 
Therefore, within the definitions sections we attempted to provide an overview, to 
explain the most important terms, and to highlight some that may have different 
meanings. 
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1. Executive Summary 
 
The Nanoinformatics Roadmap 2030 is a compilation of state-of-the-art commentaries 
from multiple interconnecting scientific fields, combined with issues involving 
nanomaterial (NM) risk assessment and governance. In bringing these issues together 
into a coherent set of milestones, the authors address three recognised challenges facing 
nanoinformatics: (1) limited data sets; (2) limited data access; and (3) regulatory 
requirements for validating and accepting computational models. It is also recognised 
that data generation will progress unequally and unstructured if not captured within a 
nanoinformatics framework based on harmonised, interconnected databases and 
standards. The implicit coordination efforts within such a framework ensure early use of 
the data for regulatory purposes, e.g., for the read-across method of filling data gaps. 
 
As illustrated in Figure 1, the scientific fields represented in this roadmap include: 
materials science/NM physicochemical characterisation; eco- and human toxicology 
(including systems biology approaches); computational modelling; and informatics. 
Each has its own history, precepts, test methods, analytical tools, metadata forms, 
ontologies, and criteria for interpreting experimental or computational results. 
Additionally, each has its own research community. The Nanoinformatics Roadmap adds 
a formal factor capturing the environment, and health and safety (EHS) data 
requirements (e.g., good laboratory practice) related to regulatory assessments and 
governance. Coordination of future research efforts and provision of a shared vision, 
rather than programmatic direction, is the Roadmap’s role. 
 
 

 
 
Figure 1: The Nanoinformatics Roadmap: from disparate fields to an integrated infrastructure. 
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The above-mentioned scientific fields are at different stages of development and have 
different information requirements, testing methods, terminologies, and protocols. Even 
the more established fields are re-examining testing protocols and accepted data 
formats to include NM transformations during the life cycle and dynamic NM properties 
that have strong impacts on exposure, dose and toxicity. Nevertheless, a shared 
informatics infrastructure can be identified. Technical data storage, data retrieval and 
theory development required to support computational modelling for regulatory 
guidance can be pursued through a modular growth of the datasets, ontologies and 
structures. Establishing a robust and sustainable nanoinformatics infrastructure will be 
critical to achieve important long-term scientific goals such as reliable integration of 
modern systems biology approaches into regulatory testing, or reduced reliance on 
animal testing. This roadmap provides the nanoEHS community with a framework for 
incremental growth, building on the structure and ontology developed in earlier 
projects. Methods can be developed and applied to systematically drive ontology 
development, and improved communication processes will foster increased maturity in 
protocols, language, testing requirements and integrated data formats for the 
interrelated scientific fields necessary to achieve roadmap goals.  
 
While each scientific field has its own direction, (eco)toxicology plays a central role in 
responsible development of NMs and provides a focus for aligning progress in relevant 
research fields with criteria used by regulators for registering chemicals, pesticides or 
drugs. We recognise that not every cellular effect caused by a NM will lead to an adverse 
outcome, nor will every physicochemical property that can be measured or predicted by 
computer models have a causal effect on toxicity. However, when they do align, there is 
an imperative that the results be useful to the regulator. 

 
The Nanoinformatics 2030 Roadmap envisages a flow of data from several empirical 
fields into structured databases for eventual use by computational modelers for 
predicting properties, exposure, and hazard values that will support regulatory actions 
for a target NM. A simplified data flow is illustrated in Figure 2. 
 

 
 
Figure 2: Simplified Data Flow proposed in the EU-US NanoInformatics 2030 Roadmap. 
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It is expected that current interest in Integrated Approaches to Testing and Assessment 
(IATA), alternative test strategies that minimise whole animal testing, and the simple 
but fundamental desire to have a mechanistic understanding of NM (eco)toxicity will 
lead to greater reliance on computational modelling to predict properties, 
environmental fate, toxicokinetics and (eco-)toxicity for new materials. A growing 
knowledge base, supporting robust modelling capabilities that predict properties, 
exposure and hazard potentials of NMs, would also make possible safer-by-design 
approaches. NM attributes that drive both commercially-useful NM properties and 
possible undesirable EHS profiles could be explored during early stage research and 
development, and used later to design materials that maximise utility while minimising 
adverse biological effects. 
  
Given that the readers of this report will be experts in specialised fields interested in 
understanding developments in nanoinformatics, the authors have written the Sections 
to be understandable by a broad audience. The reader can either start with their own 
field, or with the milestones, or with the Sections outlining the nanoinformatics 
communities. The Roadmap consists of three sections: an administrative section 
(Executive Summary; Definitions and Context; Objectives); a technically oriented 
informatics section (informatics, materials modelling, statistical computation, omics 
bioinformatics) and a community of practice-oriented section (stakeholders, database 
projects, initiatives and milestones & pilot projects). Each Section is self-contained and, 
where appropriate, cross-cutting issues are identified. 
  
The Roadmap’s Sections do not follow either the complexity in Figure 1 or the simplified 
data flow in Figure 2. As a guide for the reader, we offer the following commentary 
connecting the several Sections, relying primarily on Figure 2. 
  
Empirical Fields: 
  

● Toxicity and ecotoxicity are the subject of a separate Research Roadmap 
(Strategic Research Agenda). There is a short overview of toxicological testing 
from an informatics perspective in the Milestones (Section 12.2). 

● The burgeoning field of omics is discussed in Section 8 with special emphasis on 
transcriptomics, the most advanced field from an informatics standpoint. 

● Physico-chemical characterisation is interspersed as property representation 
(Section 5.2) and descriptors (Sections 6.2 and 7.2). As with toxicity, there is a 
short overview from an informatics perspective in the Milestones (Section 12.3). 

  
Databases: 
  

● Informatics involves structured datasets, where the structure is provided by the 
controlled vocabulary used and by the relationships among terms, the ontology 
(Section 5.8). Essentially, the database curator annotates experimental data to 
maximise its utility beyond that of the original field. In effect, the curator 
deconstructs the original experiment into components that reflect 
physicochemical properties of NMs to supplement the biological understanding 
found in bioinformatics ontologies. 
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● From a strict dataflow standpoint: data collection (Section 5.5) leads to material 
(Section 5.1) and property representation (Section 5.2) that are curated (Section 
5.4) and further described using metadata (Section 5.7) so that data can be 
retrieved (Section 5.6) and exchanged (Section 5.9). Data quality assurance and 
control (i.e., QA/QC) are critical when collecting data for incorporation into 
datasets and are discussed within data management plans (Section 5.3). 

● It is unlikely that there will be only one authoritative database. This have driven 
development of data transfer formats such as ISA-TAB-nano (or upgrades to ISA-
JSON) for exchanging data with other databases or modelling programs (Section 
5.9.1). The reasons for the development of multiple databases include: issues of 
unpublished data; different foci; proprietary data; or even mundane issues like 
resources for database maintenance (Section 5.3 and 5.10). In the Roadmap, 
there is a preference for using extensions compatible with the publicly available 
ISA standard used in bioinformatics. However, advances will occur that allow 
processing of heterogeneous datasets that do not lend themselves readily to 
structured dataset representations. 

  
Computational Modelling: 
  

● Where informatics deconstructs the NM and properties, computational modelling 
re-constructs information by using those parameters as descriptors (Sections 6.2 
and 7.2) viewed as most relevant to the physicochemical or biological property 
being predicted. The descriptors may be properties measured (for the same or 
for related materials) or computed from theoretical concepts. 

● Collecting curated data (Section 5.4) of sufficient extent (size of dataset; 
replicates; dose-response) has led to development of several data-filling 
approaches (Section 6.4) used, for example, to support NM grouping (Section 
6.3). 

● Inherent to computational modelling is relating the material description and 
intrinsic/extrinsic physicochemical properties to the biological outcomes, 
especially if some descriptors are not readily measurable. This challenge leads to 
several approaches to selecting descriptors: for material representation (Section 
5.1); for  primarily measured properties (Section 6.2) when used in statistical 
models to predict properties (quantitative structure-property relationships, 
QSPR) or biological activity (quantitative structure-(bio)activity relationships, 
QSAR) (Section 6.4); for calculating descriptors otherwise difficult to measure 
using theory and computational models (Section 7.2) before coupling to 
biological testing (Section 7.6) to arrive at predictions on how NM might 
modulate important biological processes. 

● It is essential to validate model predictions, either by splitting datasets into 
training and test subsets, or by measuring properties of material libraries for 
which predictions of their target property have been made. A modelling overview 
is given in the Milestones (Section 12.4). 
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Validation: 
  

● Validation is a critical step especially if predications obtained by computational 
models are to be used in regulatory context, e.g. for data-gap filling or for 
justification of waiving specific testing.  

● The validation requirements, which are well established in computational 
sciences in general, still have to specified for NM models. We can expect that 
validation in a regulatory context will be more rigorous, e.g. for predicting 
biological outcomes compared to predicting NM properties that have little 
immediate relevance to toxicity. In toxicity, there is increasing emphasis on 
understanding the mechanisms of toxicity. Mechanistic insights are needed to 
describe these modes of action (MOA) and to construct adverse outcome 
pathways (AOPs) that are a subject of the Regulatory Research Roadmap. Here 
we give an overview from an informatics perspective in the Milestones (Section 
12.2). 

● In all cases, regulators will require that there be a proven relationship among the 
computational model’s algorithm and its domain of applicability (the range of NM 
properties for which the model makes valid predictions, grouping Section 6.3). 
There is also a higher likelihood of acceptance if the mechanism underlying the 
effect induced by the specific property is known. We expect that the regulatory 
requirements will be specified and communicated once a critical mass of high-
quality data has been generated and computational models to predict NM 
properties become more widely available (Section 6.4). 

  
Nanoinformatics Community: 
  
While there has been funding for data management on an individual project basis, the 
use of this information in a regulatory context has been a challenge for several reasons. 
In general, nanoinformatics has relied on communities of research, such as those 
outlined in Section 9. The Roadmap itself is an example of one such community of 
research. Though initiated in Europe, the Roadmap expands on an earlier U.S. document. 
The milestones are based on the results of several international workshops whose lead 
authors were approached during the review process (Section 4). Throughout the 
process, issues and draft Sections were discussed at European (EU NanoSafety Cluster 
WG4, now WG F) and U.S. (NIH NanoWG) teleconferences whose participants have met 
regularly for several years on nanoinformatics. Colleagues from Canada, China and 
Australia participated, as well as those active in ASTM International’s E56 and ISO’s TC-
229. In addition, the EU-US Communities of Research 2016 and 2017 meetings were 
used for face-to-face discussions of this Roadmap. 
 
There are also broader issues that cannot be covered fully in this document. For 
example, it is not our intention to fully cover the differing perspectives among various 
stakeholders (Section 9 and 10) that would require a separate activity. 
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2. Definitions in an Operational Context 
 
A number of general terms and ‘operational’ definitions for navigating the Roadmap are 
provided in Table 1. It should be emphasised that there are many sources for terms (e.g., 
ISO, ASTM, published, peer-reviewed literature) and particular care should be taken 
when using these terms in a legal or regulatory context. One example of a legal 
difference between the European Union and the United States is provided for ‘chemical 
substance’ in Section 5. 
 
Table 1: Overview of general terms and operational definitions. 
 

Term Operational Definition Roadmap 
Section 

Controlled 
Vocabulary 

Standardised list of unique terms and their definitions used to index, 
annotate, enter and retrieve information. 

5 

Data Curation The active and ongoing management (involving QA/QC) of data 
through its lifecycle; curation activities enable data discovery and 
retrieval, maintain quality, add value, and provide for re-use over 
time. 

5 

Data Filling In a regulatory setting, applying computational methods for predicting 
a parameter’s value for a test material using data on known (and 
related) materials; implementation requires clear definition of the 
applicable domain. 

6,7,12 

Database Collection of data organised according to a conceptual structure 
describing the characteristics of these data and the relationships 
among their corresponding entities, supporting one or more 
application areas (ISO/IEC 2382:2015) 

5 

Property Physicochemical parameters that can be measured experimentally and 
that is either intrinsic (i.e., independent of external conditions) or 
extrinsic (i.e., dependent on external conditions). 

5,6,7 

Descriptor A collection of measured, theoretically or computationally derived 
values representing an intrinsic or extrinsic property of a target NM 
and that are also sufficient, mechanistically plausible, relevant and 
non-redundant for use in a computational model. 

6,7 

Informatics The application of information and computer science methods for 
collecting, analysing, and applying data in a scientific field. 

All Sections 

Metadata Data describing the content (including indexing terms for retrieval), 
context and structure of electronic document-based information and 
their management over time (ISO/TR 18492:2005, term 3.8). 

5.7 

Nanotechnology The application of scientific knowledge to manipulate and control 
matter predominantly at the nanoscale (< 100 nm). 

All Sections 

Ontology Controlled vocabulary extended to include the relationships among 
terms for the purpose of analysis, computational modelling and theory 
development. 

5 

Physical Model Representation of the physical entity that is the basis for a data model, 
controlled vocabulary and ontology. 

12 

QSPR Quantitative Structure-Property Relationship 6 
QSAR Quantitative Structure-Activity Relationship 6 
Recall and 
Precision 

The ability to collocate related database entries (recall) that are 
specific to a query (precision). 

2 

Structure Source of spatially resolved properties reflecting the relationships 
among and the manner of arrangement of a complex entity’s 
components. 

5,6,7 

nanoEHS Environmental and Health Safety aspects of NMs All 
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It should be emphasised that nanotechnology covers a broad array of scientific 
disciplines, each with a specialised language and, occasionally, different definitions of 
terms. Informatics, on the other hand, involves the application of external organising 
principles onto the data generated within a scientific discipline. In such situations of 
countervailing interests, it becomes difficult to offer a coherent glossary of terms and 
definitions. For the purposes of this Roadmap, and recognising that readers might 
appreciate some explanation for those themes beyond their expertise, we instead offer a 
descriptive overview illustrating their use, i.e., operational definitions. 
 
Informatics is the application of information and computer science methods for 
collecting, analysing, and applying data in a scientific field, e.g., bioinformatics. Thus, 
nanoinformatics is a systematic methodology to collect, organise, validate, store, share, 
model, analyse, and apply data involving nanotechnology processes, materials, 
properties and commercial product implications; to confirm that appropriate decisions 
were made and that desired outcomes were achieved from the application of the data; 
and finally, to convey experience to the broader community, contribute to generalised 
knowledge, and update standards and training. The inclusion of product 
commercialisation expands the stakeholders (see Stakeholders in Section 9) to include 
regulators and the general public interested in NM environmental, health and safety 
(nanoEHS), as well as in responsible research and innovation. 
 
The Roadmap combines several aspects of nanoinformatics in a manner that provides 
operational definitions for a number of concepts (highlighted in bold): 
 
1) Data from credible sources are being compiled into structured, electronic datasets, 
where the data may be publicly available (published) or not (unpublished laboratory 
data), may be from publicly funded research projects or from formal regulatory 
submissions on specific materials (likely to be confidential business information) and 
may be numerical or pictorial. We anticipate that there will be multiple databases 
administered independently, but with some level of interoperability desired. 
 
2) A ‘collection of data organised according to a conceptual structure’ means that the 
database can be used to retrieve the original data. The term ‘organised’ refers to the use 
of controlled vocabularies, metadata, and ontologies during data entry in order to 
ensure reasonable recall and precision in collocating findings from related studies. We 
anticipate that there is a role for data curation in annotating metadata and commenting 
on data completeness and data quality (see Section 5). Some standardisation within the 
nanoinformatics field will be necessary if data are to be exchanged between databases. 
While there was an early preference for organising data into ‘structured’ datasets, it is 
recognised that datasets can also be in unstructured formats. Unstructured datasets 
contain data that are not or cannot be easily organised in a predefined manner (e.g., 
reside in fixed fields or records). 
 
3) Computational techniques for analysis, modelling and theory development may also 
impose issues of standardisation in terms of data relevance, quantity, robustness, 
completeness and validity. These issues may differ across stakeholder interests, where 
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the metadata for theory development may be less restrictive when remaining within a 
single scientific discipline. Metadata requirements for regulatory purposes may cross 
disciplines and emphasise the following proper test protocols, even where these are not 
yet formally validated for use with NMs. We view cross-disciplinary awareness and 
coordination of these issues as a central impetus to the Roadmap as they will continue to 
undergo development and refinement throughout the 2030 time-frame (Milestones, 
Section 12). 
 
4) The size of currently available datasets is a particular challenge for computational 
modelling, raising as it does, issues of database access, data completeness among 
independent studies, and even model validation. Relative to other ‘big data’ fields, the 
number of independent studies, the range of NMs studied and the robustness of test 
protocols are more limited (see Sections 6, 7 and 8). We anticipate that these fields will 
advance independently with regulatory validation and acceptance first occurring during 
data-filling and grouping exercises, the preparation of registration dossiers, and the 
testing programs under the appropriate regulatory frameworks (e.g., REACH, BPR, U.S. 
EPA etc.) (see Sections 6, 7 and 9). 
 
5) Computational techniques for modelling and theory development will eventually lead 
to predictive capabilities based on descriptive elements (descriptors, Sections 6 and 7) 
based on data already present in the ‘structured’ dataset or that are generated from 
innovative concepts (theory, metadata, mathematical expressions) that are validated by 
the data already present in the ‘structured’ dataset. We have provided one physical 
model of a NM (Milestones, Section 12.3) to serve as a common base for understanding 
data models incorporated into database ontologies or found as boundary conditions in 
simulations or computational models. 

3. Objectives 
 
Nanotechnology is one of the key technologies of the 21st century. The global 
nanotechnology market already had a value of $39.2 billion in 2016 and is expected to 
reach $90.5 billion by 2021 [1]. In addition, public funding sources invested more than 
$67.5 billion globally during the last decade for research and development [2]. 
Nanotechnology already has many different applications and the global market is 
increasing steadily each year. Due to significant funding from both public and private 
sources, knowledge has increased significantly during the last decades. Several large 
collaborative projects investigating the environmental and health safety aspects of NMs 
(nanoEHS) have been completed, with several more ongoing or starting in 2018. In 
addition, there are experimental toxicology developments, such as high throughput and 
high content methods, which generate extensive data in a short time. Therefore, as in 
many other scientific disciplines, the amount of available data has increased 
dramatically in recent years. Nanotechnology requires integration of knowledge from 
diverse disciplines such as materials science, biology, chemistry, toxicology, medicine, 
and computational and decision sciences. In parallel, computational approaches are 
gaining increasing importance and popularity, especially those employing machine 
learning (ML) or deep learning (DL). Advances in nanoinformatics will be essential for 
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extracting useful information from ‘data lakes’ for use development and application of 
sustainable nanotechnology. This roadmap addresses the following objectives: 
 
Objective 1: Foster community interactions and provide stakeholder support  
 
NanoEHS integrates knowledge from many different disciplines, each generating and 
using different types of data, and having different stakeholders, each with their own 
objectives and data storage and use requirements. This roadmap will foster the “self-
assembly” of this heterogeneous community so that each stakeholder understands the 
specific needs and objectives of the others. This document also provides an overview of 
the nanoinformatics processes and tools available to support different stakeholders in 
achieving their specific objectives. The roadmap clearly describes the benefits of 
nanoinformatics at different phases of work within the context of nanoEHS for different 
stakeholder needs. 
 
Objective 2: Promote capture, preservation and dissemination of all publicly- 
available NM measurement data 
 
A considerable investment has already been made by public and commercial sources 
into nanotechnology development in general, and nanoEHS specifically. Future 
resources are limited so it is critical to make the maximum possible use of existing data, 
to avoid duplication of work and re-measurement, but also to plan new research needed 
to plug gaps in existing datasets and promote consistency in reporting results. It also 
ensures that results are secure and data can be accessed later by others. Therefore, 
knowledge can be increased by generation of new, more detailed data or by meta-
analyses of existing data, which will be facilitated by an increasing number of in silico 
methods. 
 
This roadmap supports the creation and linkage of repositories to ensure that all 
publicly funded NM measurement and modelling results are deposited in accessible 
repositories, so that they can provide data to the evolving infrastructure of risk 
assessment and management decision support tools. Specifically, it aims to raise public 
awareness of the benefits of data-sharing principles in all levels of the research 
community. It describes a step-by-step process to achieve this overarching goal and it 
explains what kind of infrastructure is needed for this purpose.  
  
Objective 3: Facilitate the (re-)use of existing data 
 
To pursue optimal data usage, a system should comply with FAIR data principles and 
guidelines (Findable, Accessible, Interoperable and Reusable) for data and the 
algorithms, tools and workflows that operate on it [3]. For example, data sets should 
have sufficient metadata, it should be clear where the data can be downloaded or 
requested from, and ontologies should be used to allow easy integration and re-use with 
other data. Encouraging the scientific community/stakeholders to make use of existing 
data will facilitate: 
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● a (better) understanding of experimental results through integration of currently 
disparate datasets; 

● the development of different kinds of models of varying complexities and their 
validation using existing datasets, allowing for predictions of properties, 
performance and functionality of NMs; 

● the correlation of specific biological effects with NM physicochemical properties;  
● the direct use of existing data to fulfill data requirements for risk assessment and 

regulatory obligations; 
● information exchange between research communities and interested industry 

partners, reducing extent of new experimental testing; 
● capturing the breadth and extent of NM use; 
● development of appropriate nanoEHS controls and benchmarks. 

 
This enhanced knowledge will support: 

● the implementation of Intelligent Testing Strategies for more cost-efficient risk 
assessment; 

● the purposeful design of new NMs with lower human health or environmental 
impact; 

● the establishment of NM grouping and read-across approaches; 
● the establishment of Safe(r)-by-Design Principles; 
● decision making regarding the risks of nano-enabled products and processes; 
● regulation.  

  
Objective 4: Identify specific milestones/pilot projects aligned to objectives 1-3 
 
This roadmap identifies and describes the key challenges for nanoinformatics covering 
data storage, data use, dissemination and exploitation for safety assessments and risk 
management. 
 
It also identifies and describes specific pilot projects covering short (next 3-5 years), 
medium (next 5-10 years) and long-term (> 10 years) needs as key stepping 
stones/demonstrators needed to reach the first three objectives. 
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4. Introduction 
 
This roadmap is a timely continuation of several previous efforts, namely of three 
workshops, one conference, a few workshop reports, and the US Nanoinformatics 2020 
Roadmap. As this roadmap builds and extends those, they should be briefly mentioned 
here.  
 
The Nanoinformatics 2020 Roadmap [4] was based on a 2010 workshop involving 
~73 participants, mainly from USA with some representatives of the EU’s Action Grid 
effort [5]. The following topics were discussed during this workshop and accordingly 
described in the roadmap. Many of them remain pertinent: 
1. Data collection and curation needs: 

o Minimal information standards for nano-data sets (completeness and 
quality) 

o Inter-laboratory studies (ILS) for test protocol and data completeness 
validation 

o Community-wide standardised characterisation; and 
o How much information is needed to trigger a “recognised hazard”?  

2. Tools and methods for data innovation, analysis and simulation needs: 
o A complete map of data collection and curation workflows to guide the 

development of nanoinformatics 
o A mechanism for federated searches to utilise existing nanotech 

databases;  
o Getting the science right; and 
o Getting the right data 

3. Tools, training, and education perspectives: 
o Data Accessibility and information sharing 
o Context is critical for effective information sharing; and  
o Competing socio-cultural incentives impact data sharing  

 
The Nanoinformatics 2020 Roadmap listed available resources at that time and also 
proposed several pilot projects. 
 
In 2011, COST (European Cooperation in Science and Technology) sponsored a 
workshop in Maastricht with ~90 attendees on the use of QSAR methods to model 
biological effects of NMs (www.cost.eu/events/qntr). The resulting paper by Winkler et 
al. [6] proposed 14 milestones and grouped them in 2-, 5- and 10-year time horizons. 
For the most part, the milestones reflected:  

o a need to generate sufficient data for model development 
o acceptance of ‘surrogate’ assays useful for modelling if not for regulation 
o expectation that understanding protein corona formation would provide 

necessary mechanistic information; and  
o a view of informatics as a needed infrastructure for data accessibility 

 
This roadmap also benefited from Winkler’s more recent commentary [7]. While 
progress was noted, especially the availability of benchmark test materials, there remain 
insufficient data resulting in a need for surrogate or fast screening assays, for improved 

http://www.cost.eu/events/qntr
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nano-specific descriptors and for an exploration of chemical grouping. The update in 
particular emphasised data curation, informatics, and data consolidation and 
standardised testing. 
 
In 2014, the U.S. National Science Foundation (US NSF) funded a workshop held prior 
to the Sustainable Nanotechnology Organisation meeting in Boston on the general theme 
of defining the fundamental science needed to support nanoEHS. The resulting paper by 
Grassian et al. [8] identified mechanistic data gaps that when resolved would enable a 
predictive biological response capability. 
 
In 2015, the first European Modelling Conference, CompNanoTox, took place in 
Benahavis, Spain, being organised by all European modelling and database projects 
funded at that time (i.e., NanoPUZZLES, ModENPTox, PreNanoTox, MembraneNanoPart, 
MODERN, eNanoMapper) and the EU COST action TD1204 MODENA. The resulting 
paper by Banares et al. [9] described the most important current challenges with respect 
to NM modelling. This paper described for instance shortcomings with respect to 
material characterisation, a lack of suitable, validated toxicity assays and a lack of 
mechanistic understanding of NM toxicity. 
 
This roadmap builds on the above documents. In chapters 5, 6, 7 and 8, the state of the 
art and the current challenges with respect to data collection and data curation (Section 
5), nanochemoinformatics modelling (Section 6), materials modelling (Section 7) and 
nanobioinformatics (Section 8) are described. This is followed by a description of the 
“nanoinformatics community and stakeholders,” ongoing nanoinformatics activities, 
available databases, interesting projects and integrated activities etc. (Sections 9 to 11). 
This leads into Section 12 describing suggested milestones and several useful pilot 
projects grouped according to their time-horizon as short-term, mid-term or long-term 
projects, which are listed and described from several perspectives, i.e., the perspective 
of material characterisation, the perspective of toxicologists, of modellers and 
regulators. 
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5. Data Collection and Curation  
 
Nina Jeliazkova1, Christine Ogilvie Hendren2, Danail Hristozov3, Lucian Farcal4, Nikolay 
Kochev1,5, Philip Doganis6, Peter Ritchie7, Barry Hardy4, Claus Svendsen8, Frederick 
Klaessig9, Egon Willighagen10, Yoram Cohen11 
 
1 Ideaconsult Ltd, Sofia, Bulgaria 
2 Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, NC, 
USA 
3 Greendecision Srl, Italy 
4 Douglas Connect GmbH, Basel, Switzerland 
5 Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, Plovdiv, Bulgaria 
6 National Technical University of Athens, Greece 
7 Institute of Occupational Medicine, Edinburgh, UK 
8  Centre for Ecology and Hydrology, Wallingford, UK 
9 Pennsylvania Bio Nano Systems, LLC, USA 
10 Department of Bioinformatics, NUTRIM, Maastricht University, NL 
11 Center for Environmental Implications of Nanotechnology (CEIN), UCLA, CA 
 
A major challenge for the nanoEHS community is the establishment of common 
languages, standards and harmonised infrastructures with applicability to the needs of 
the different stakeholders. The complexity of NMs, their physico-chemical properties 
and their interactions with biological and environmental systems, leads to uncertainty in 
the applicability of experimental data for regulatory purposes that demand sound 
scientific answers. Thus, recent community efforts have focused on building databases 
that support computational modelling and decision frameworks for NM environmental 
health and safety (nanoEHS) assessment and risk management. Those based on open 
standards, open source, common languages, and interoperable designs are desirable. 
 
Another major challenge for the nanoEHS community is linked to data quality and data 
curation. The NM data curation topic has been the focus of multiple collaborative efforts 
and publications [10-14]. Specific recommendations regarding terminology, (meta)data 
requirements, computational tools, and recommendations regarding the role of 
organisations and scientific communities have been published [13]. The terminology 
recommendation includes defining community agreed data completeness and quality 
criteria. One of the key findings is that the data completeness and quality will depend on 
specific user or stakeholder needs. Hence it is critical to identify the relevant scientific, 
regulatory, societal and industrial use cases. Building and adopting common 
vocabularies or ontologies address the provenance metadata requirements to represent 
materials and studies, manufacturer supplied identifiers, composition, impurities, as 
well as experimental protocols, experimental errors, etc. As investigators will vary in 
their knowledge of informatics, it is desirable to have standardised templates for data 
entry based on minimum information checklists and ISA-TAB [15] and ISA-TAB-Nano 
specifications [16]. However, user-friendly templates for data logging captures only one 
data source, a specific laboratory, when there are also other data sources such as journal 
articles, proprietary studies, or independently maintained databases. While challenges 
for NM data curation workflows are extensively described in [11], the broader 
experience of extracting and compiling literature data, leads to another recognised task 
of integration of, and exchange between, existing databases. NM entries (information) 
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are found not only in dedicated NM databases, but also in generic chemical, toxicology 
and toxicogenomics databases as well as in regulatory databases like those hosted by 
ECHA in the context of REACH [17].  
 
To summarise, unstructured nano-related data are relatively abundant, and rapidly 
generated, but are also quite dispersed across many different sources. Combining data 
from various sources is hampered by the lack of programmatic access and the absence 
(or infrequent use) of a widely shared representation of NMs and related experimental 
data. It has to be noted that while common vocabularies are being developed, the 
nanoinformatics community has not yet arrived at a commonly agreed “conceptual 
schema” nor agreed on how to represent the common concepts of the domain and their 
relationships. 

5.1 Challenges: Material Representation 
 
The representation, processing, and communication of information about objects are at 
the core of any information system and informatics in general. The representation of 
chemical and biological objects is fundamental for the interdisciplinary field of 
bioinformatics. Chemoinformatics is a well-established field, which supplies tools for 
representing, processing and solving problems with chemical molecules in general. The 
term nanoinformatics was introduced to delineate the activities specific to managing 
and processing information about NMs. An adequate computer representation of the 
objects (entities) is required in order to handle biological, chemical, or NM information, 
and to enable the building of information systems. Literally, there are thousands of 
different descriptors that can be measured or calculated for NMs, but only a subset is 
likely to be relevant to a specific EHS aspect or a given application. Descriptors 
encompass physical and chemical identity (i.e., size, shape, chemical composition, and 
particle architecture) associated with material representation, intrinsic properties and 
extrinsic properties (Sections 6.2, 7.2.1, 7.2.2). 
 
For cheminformatics (Section 6), the central object (entity) is the molecule’s chemical 
structure, following the origin of the “chemoinformatics” in the context of drug design. 
There are several levels of chemical structure representations, which reflect different 
chemistry models or theories. For example, graph theoretical approaches (e.g., 
constitutional, topological, 3D, conformational representation) are not easily combined 
with quantum chemical approaches (Section 7) [18]. The structure formalisation is the 
starting point for all other activities and is reductionist by its nature because only 
particular aspects of the chemical reality are formalised. The most popular method of 
representing chemical structures is the chemical graph, which is the basis for 
representing structures by connection tables, linear notations as SMILES and InChI, and 
de-facto standard chemical formats such as SDF. Even those chemical databases using 
the same chemical graph concepts may differ in database technology and physical 
database schema. Unfortunately, the graph theoretic representation of well-defined 
chemical structures is ill-suited as a single representation of NMs: it is not able to 
distinguish all aspects of the NM structure, also partly because that structure may not 
always be known. As a result, it is difficult to distinguish between properties of a 
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nanoscale and bulk material with the same chemical structure. The quantum chemistry 
formalisms are also able to capture aspects of the NMs and are used to study material 
functionality and structure (see Sections 7 and 12.4), but may also suffer from a lack of 
knowledge about the structure. Relating NM identity, characterisation and biological 
properties often requires less detailed representation than the quantum chemistry level, 
and there are several parallel attempts in this direction. 
 
There is a need for an agreed conceptual representation of a (nano-)material compatible 
with the emerging regulatory consensus that NMs are to be handled as an extension of 
chemical substances [19]. However, substances may have complex compositions. The 
definition of a “substance” in the European Chemicals regulation REACH implicitly 
covers all forms and sizes such that NMs are included as so called “nanoforms” of a 
substance (see Section 10.2 for impact on industry and Section 12.3 for further 
thoughts). Note: The reader is reminded that the terms “substance” and “nanomaterial” 
may have different definitions in different legislations. For instance, in the United States 
the Toxic Substances Control Act (TSCA) defines a substance as 'any organic or inorganic 
substance of a particular molecular identity, including any combination of these 
substances occurring in whole or in part as a result of a chemical reaction or occurring in 
nature, and any element or non-combined radical'. In contrast, EU REACH defines a 
substance as 'a chemical element and its compounds in the natural state or obtained by 
any manufacturing process, including any additive necessary to preserve its stability and 
any impurity deriving from the process used, but excluding any solvent which may be 
separated without affecting the stability of the substance or changing its composition'. 
 
The definitions of the terms “substance” and “material” are discussed in Roebben et al. 
[20], comparing ISO, EU REACH and general scientific definitions of the terms. 
 
The Nano Particle Ontology (NPO) defines a NM (NPO_199) as equivalent to a chemical 
substance (NPO_1973 or CHEBI_59999) that has as a constituent a nano-object, 
nanoparticle, engineered NM, nanostructured material, or nanoparticle formulation. The 
OECD Harmonised Templates represent NMs as substances consisting of components, 
additives and impurities, and the recent IUCLID6 implementation extends the 
representation to handle nanoforms. Describing the NM composition requires 
description of many components (also termed constituents) and the complex relations 
among them. For example, a NM may consist of a core and one or more layers (shells, 
coatings) around the core.  
 
NM representations (descriptions or identities or physical models) may differ across 
databases. For example, the Nano Exposure and Contextual Information Database 
(NECID) defines the material only by its core for the purpose of handling exposure 
scenarios, while the CEINT database introduces an additional concept of “instance” 
meaning the point in time when the NM transits to the next life cycle stage and warrants 
measurement of its chemical or biological properties as well as those of the system. The 
“instance” is considered critical by the CEINT group in order to allow investigation of the 
dynamic nature of NMs including the transformations and kinetic processes that have 
been proven to affect NM fate and effects. The EU project NanoMILE took a similar 
approach, linking “aged” NM properties to the initial pristine properties, and compared 

http://bioportal.bioontology.org/ontologies/ENM/?p=classes&conceptid=http%3A%2F%2Fpurl.bioontology.org%2Fontology%2Fnpo%23NPO_199
http://bioportal.bioontology.org/ontologies/NPO/?p=classes&conceptid=http%3A%2F%2Fpurl.bioontology.org%2Fontology%2Fnpo%23NPO_1973
http://bioportal.bioontology.org/ontologies/ENM/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FCHEBI_59999
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the toxicity of both. The EU H2020 project NanoFASE is building on the approaches 
developed by the EU FP7 project NanoMILE and the Center for the Environmental 
Implications of NanoTechnology (CEINT), such that the characteristics of NMs after 
“reaction” in different environmental compartments (soil, water, sediment, wastewater 
treatment or uptake and excretion by organisms) are all considered as different 
instances, unless experimentally confirmed (and in due course predicted) to be identical 
to the outcome from the previous compartment. 
 
The basis of many chemical databases is the direct link between the chemical structure 
(as chemical composition) and properties, which is well aligned to supporting 
modelling. However, the concept of assigning measured properties to chemical 
structures is yet another approximation, not directly applicable to material data 
representation. Instead, measured properties have to be assigned to nanoforms of 
‘chemical substances’ as legally defined (i.e., considering NMs as a subclass of 
substances), in line with the IUPAC definition. This approach is also applicable where 
information on chemical substances, as produced by industry, is required. Flexibility 
with respect to cases where the measured property is a property not of the entire 
material, but only one of its components (e.g., surface layer composition) is also 
relevant. 

5.2 Challenges: Property Representation  
 
Besides the materials themselves, a nanoinformatics data curation framework must 
capture the physical and chemical attributes of NMs, including the notions of mixtures, 
particle size distribution, shape, differences in extent of surface modification, 
manufacturing conditions, and batch effects. It must also capture the potential for 
evolution of many of these properties, such as changes in surface speciation, loss of 
coating, acquisition of an environmental or biological corona, and so forth, when the NM 
is embedded into a product, is released into the environment or comes into contact with 
biological organisms. Finally, there are the biological attributes (e.g., toxicological effects 
of NMs, modes-of-action, toxicity pathways), interactions (with different cell models), 
and a wide variety of measurement approaches with various specific conditions. Several 
analytical techniques have been adopted and developed to characterise NMs physico-
chemical properties. The selected pilot project on dissolution illustrates the complexity 
of just one type of measurement. With expanding insight into the factors determining 
toxicity, the list of potentially relevant properties is growing. In vitro toxicological 
characterisation for hazard assessment includes many endpoints and moreover each 
endpoint can be addressed using different assays. High throughput cellular assays and 
omics data as well as kinetic measurements are becoming increasingly important in NM 
assessment. A common requirement for all types of users is to link the NM entries to 
those studies in which toxicological or biological effects of the NMs have been studied, in 
addition to an accurate physico-chemical characterisation. Thus, the properties and 
their representation should remain consistent with the descriptors used by ECHA 
(2017) and EPA (2017) for “nanoforms” and “nanoscale forms,” respectively, but with 
more detail. 
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Supporting such heterogeneous datasets is a significant challenge. However, this is not 
unique to nanoinformatics. The potential solution is to organise the experimental data 
around the fundamental concepts of “test” and “measurement” [20]. There is evidence of 
database developers adopting this approach, although the terms “test”, “assay”, 
“experiment”, and “endpoint” are often used inconsistently across different players. The 
OECD guideline defines the “test” or “test method” as the experimental system used to 
obtain the information about a substance. The term “assay” is considered a synonym. 
The term “testing” is defined as applying the test method. The endpoints recommended 
for testing of NMs by the OECD Working Party on Manufactured NMs (OECD WPMN) use 
the terms and categories from the OECD Harmonised Templates (OHT). The NPO 
distinguishes between the endpoint of measurement (e.g., particle size, NPO_1694) and 
the assay used to measure the endpoint (e.g., size assay, NPO_1912), where the details of 
the assay can be further specified (e.g., uses technique electron microscopy, NPO_1428). 
This structure is generally the same as the one supported by the OHT (e.g., in the OHT 
granulometry type of experiment several size-related endpoints can be defined, as well 
as the equipment used, the protocol and specific conditions). The CODATA UDS (uniform 
description system) requires specification of how each particular property is measured. 
ISA-Tab-Nano also allows for defining the qualities measured and detailed protocol 
conditions and instruments. The level of detail in the OHT, CODATA UDS, ISA-Tab-Nano 
and available ontologies differ, which is due to their different focus. 
 
Examples  

● zeta potential - entries for zeta potential property (NPO_1302), measured 
property (ENM_0000092), calculated property (ENM_8000111) 

● materials - are materials with the old Joint Research Centre (JRC) code NM-100 
(ENM_9000201) and new code JRCNM01000a (ENM_9000074) the same entity 
or not (not in the eNanoMapper ontology, per JRC advice) 

● same term used in two (or more) ontologies in different context (example: 
biological process) 

● how to describe COMET assay (OBI_0302736) and COMET Fpg assay – is this the 
same protocol, or are those different protocols. So should they be represented 
with Fpg= yes/no? or with a protocol parameter “enzyme=Fpg” or 
enzyme=”None”? 

● is TEM a protocol, an experiment, or a measurement instrument? 
● Ontology annotation of specifically treated cells (e.g., differentiated THP-1 cells 

with macrophage-like properties). If the cell is annotated with THP-1 and the 
induced cellular change is only described in the protocol, the subsequent data 
analysis should take into account the protocol details as well. 

● how to define “dispersion agent” 
● how is “toxicological endpoint” defined? How is it linked or not linked with 

specific assays? 
● Are new classes/definitions required for chemical composition (or about 

discrepancies between ontology concepts) 
 

http://bioportal.bioontology.org/ontologies/ENM/?p=classes&conceptid=http%3A%2F%2Fpurl.bioontology.org%2Fontology%2Fnpo%23NPO_1694
http://bioportal.bioontology.org/ontologies/NPO/?p=classes&conceptid=http%3A%2F%2Fpurl.bioontology.org%2Fontology%2Fnpo%23NPO_1912
http://bioportal.bioontology.org/ontologies/ENM/?p=classes&conceptid=http%3A%2F%2Fpurl.bioontology.org%2Fontology%2Fnpo%23NPO_1428
https://github.com/enanomapper/ontologies/issues/86
http://bioportal.bioontology.org/ontologies/ENM/?p=classes&conceptid=http%3A%2F%2Fpurl.bioontology.org%2Fontology%2Fnpo%23NPO_1302&jump_to_nav=true
http://bioportal.bioontology.org/ontologies/ENM/?p=classes&conceptid=http%3A%2F%2Fpurl.enanomapper.org%2Fonto%2FENM_0000092&jump_to_nav=true
http://bioportal.bioontology.org/ontologies/ENM/?p=classes&conceptid=http%3A%2F%2Fpurl.enanomapper.org%2Fonto%2FENM_8000111&jump_to_nav=true
http://bioportal.bioontology.org/ontologies/ENM/?p=classes&conceptid=http%3A%2F%2Fpurl.enanomapper.org%2Fonto%2FENM_9000201
http://bioportal.bioontology.org/ontologies/ENM/?p=classes&conceptid=http%3A%2F%2Fpurl.enanomapper.org%2Fonto%2FENM_9000074
https://github.com/enanomapper/ontologies/issues/48
http://bioportal.bioontology.org/ontologies/ENM/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FOBI_0302736
https://github.com/enanomapper/ontologies/issues/46
https://github.com/enanomapper/ontologies/issues/28
https://github.com/enanomapper/ontologies/issues/20
https://github.com/enanomapper/ontologies/issues/26
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5.3 Challenges: Data Management Plans 
 
Research Data Management Plans (RDM, DMPs) are commonly used by now, but vary 
greatly with respect to their content. There is an increasing level of guidance, e.g., the 
ELIXIR-NL overview. Having a project-level DMP matters as too frequently issues of data 
sharing come late in the project, slowing down project completion and limiting 
knowledge sharing. Data management is a cornerstone of collaboration: how, when, 
with what frequency, in what format are data archived and exchanged, and how, when, 
with what frequency data curation is done. The growing interest in DMPs has resulted in 
many suggested tools (see the aforementioned list) and literature, such as several 
articles in the “Ten Simple Rules” series about cultivating collaboration [21, 22], creating 
DMPs [23], and care of data [24]. The above initiatives should serve to strengthen the 
efficiency with which data is archived and retrieved for research purposes and ensure 
that everyone that uses well annotated and coordinated archived data can collaborate 
efficiently. 
 
Besides interactive access and archiving, data curation has received considerable 
attention [10, 25]. A group of US and EU scientists wrote a series of articles on this topic 
[24], for example, dealing with how data completeness and quality could be estimated 
[13, 14], and the interoperability of the data [26]. Given the importance of DMP for 
collaboration within a project consortium and after the project, it is surprising that these 
plans are not consistently peer-reviewed. Second, wider acceptance would be achieved 
if the DMP were an activity and not a deliverable. Not only is the DMP an active 
document, but it also needs auditing during the project and should clearly not be left to 
the project end. Peer review could focus on ensuring these features, in addition to the 
proposed methods for data management. 

5.4 Data Curation 
 
Data curation, as defined in Section 2 [27], encompasses all of the activities that are 
necessary throughout the process of extracting, organising, and entering data and 
knowledge into discrete formats within digital resources [26], and is central to the 
process of enabling data integration regardless of the size, scope or purpose of a given 
project/tool. Various aspects of data curation, including its central role to 
nanoinformatics, workflow, and data completeness and quality, have been addressed in 
a series of papers called the NM Data Curation Initiative (NDCI), developed through the 
US National Cancer Informatics Program’s Nanotechnology Working Group (NCIP 
NanoWG) [10, 11, 13]. 

5.4.1 Data Quality and Completeness 
 
Based on a survey of 24 nanoinformatics resource representatives and the subsequent 
development of broad and flexible definitions for both data quality and completeness, 
Marchese-Robinson et al. report that these concepts are best understood in terms of 
their fit for a given purpose [13].  

https://www.dtls.nl/research-data-management/data-management-knowledge-tools/


EU US Roadmap Nanoinformatics    

 
 

23 

 
Data quality may be considered to be a function of the potential correctness and 
trustworthiness of datasets, though there are a wide variety of metrics by which these 
attributes may be measured, including reproducibility, precision and uncertainty. Due to 
the pivotal role data curation plays in integrating data, “data quality” can be affected by 
the lack of compliance anywhere across the knowledge life cycle from initial 
experimental design and execution through transcription from a publication or database 
into the target resource and would also critically depend on how the data is annotated. 
 
The completeness of data and associated metadata may be considered to include the 
extent of NM characterisation along with surrounding media and experimental 
conditions to support specific post-analyses, or relative to conforming to a minimal 
information checklist. Data driven modelling methods function best with large, diverse 
data sets with good property coverage and broad chemical range. There is a strong need 
for a systematic approach to generating data for nano-bio interactions as recently 
advocated by Bai et al. [28]. 
 
Because these concepts continue to evolve and will inherently vary by the purpose and 
scope of a given resource, the data completeness and quality aspects of pilot projects are 
best conveyed by explanations of the processes, both technological and workflow 
related, that are in place to address these issues and to ensure consistency. 

5.4.2 Data Curation Process 
 
The process of curating data is currently highly resource intensive in terms of 
management, workflow, sourcing and ontology. As standards for ontology and minimal 
information requirements develop over time, curation processes and tools may 
accordingly converge. However, in the meantime, this process should be defined for 
each resource to understand the implications on data sourcing, extraction, quality, 
completeness, and fitness for purpose [11]. 

5.5 Getting Data In – Data Sources and Data Entry  
 
It is important to understand the variety of data sources (e.g., literature, intermediate 
laboratory formats, or raw data), the criteria for inclusion in the resource, and how they 
are parsed. In addition to the human decision-making aspects, the technological 
components of curation should be characterised; it is key to understand both manual 
and automated data exchange formats and web- or desktop-enabled data entry tools. 

5.5.1 File Formats and Templates 
 
The following section describes several existing approaches to support data entry for 
regulatory purposes (e.g., OHTs), research data in bioinformatics (e.g., ISA-TAB, ISA-
JSON) and its extensions for NM (e.g., ISA-TAB-Nano), as well NANoREG data logging 
templates [29]. 
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5.5.1.1 OECD Harmonised Templates 
 
The OECD Harmonised Templates (OHTs) are structured (XML) data formats for 
reporting summary data on safety related studies on chemical substances. The OHTs and 
the supporting IT tool IUCLID6 (www.iuclid.eu) are used for preparing substance 
dossiers for REACH and for other regulatory frameworks operating in Europe. The 
substance identification section is compliant to ECHA guidance for identification and 
naming of substances under REACH and CLP and requires specification of detailed 
chemical composition (including impurities and additives), concentrations of each 
constituent (typical concentration and range concentration), and links to chemical 
structures and identifiers. Each substance is assigned a universal unique identifier 
(UUID), which is specific to the company, submitting the dossiers. The common list of 
reference substances, which also have assigned UUIDs, are used to link company-specific 
substance entries to the same reference substance and chemical structures. Details on 
manufacturing can be submitted in the relevant section. The experimental data are 
arranged hierarchically, within four endpoint groups covering 1) physico-chemical, 2) 
ecotoxicology, 3) environmental fate, and 4) toxicology. Each endpoint group contains 
several tens of templates for reporting specific endpoints (e.g., melting point under 
physico-chemical group, aquatic toxicity under ecotoxicology group). The experimental 
data are reported separately for each substance in substance dossiers. Specifying the 
testing protocols with all associated details is mandatory. The protocols used in the 
regulatory context are established and mostly rely on OECD test guidelines (OECD TGs). 
The OHTs contain vocabularies in the form of pick-lists for some of the specified fields. A 
substance can be marked as NM, but there is no support for describing NM specifics at 
the composition level. However, the surface composition (coating, core, 
functionalisation, along with the method of measurement), as well as NM 
characterisation can be specified as additional physico-chemical endpoint study records 
with thirteen templates being available, which include granulometry (particle size 
distribution), agglomeration/aggregation, crystalline phase, crystallite and grain size; 
specific surface area, zeta potential, aspect ratio/shape, dustiness, porosity, pour 
density, catalytic and photocatalytic activity and radical formation potential. The full list 
of OHTs is available at www.oecd.org/ehs/templates/templates.htm. NMs are covered 
by the substance definition of REACH, and the REACH provisions apply to them. NMs can 
be registered as nanoform(s) in the dossier of the corresponding non-nanoform of a 
substance or as distinct substance. 

5.5.1.2 ISA-Tab, ISA-Tab-nano and ISA-JSON 
 
ISA, built around the 'Investigation' (i.e., the project context), 'Study' (i.e., a unit of 
research) and 'Assay' (i.e., the analytical measurement) data model, is a metadata 
framework to manage an increasingly diverse set of life science, environmental and 
biomedical experiments that employ one or a combination of technologies [30]. It was 
developed by the group of S. Sansone at the University of Oxford e-Research Centre. The 
framework provides means to describe complex experiments in the form of a directed 
acyclic graph, arranged as three hierarchical layers (i.e., investigations, studies, assays). 
The actual experimental readouts are stored in an additional data layer. ISA-Tab is the 
legacy format, relying on tab-delimited files. The latest specification (Feb 2017) defines 

http://www.iuclid.eu/
http://www.oecd.org/ehs/templates/templates.htm


EU US Roadmap Nanoinformatics    

 
 

25 

an Abstract Model, implemented in two format specifications ISA-Tab and ISA-JSON 
(JavaScript Object Notation). The new ISA-JSON specification includes a JSON schema 
and an ecosystem of tools used for creating, validating and visualising documents and is 
designed around the concept of “core” ISA schema and “extensions”. It is expected that 
different communities will develop extensions specific to their interests. The 
eNanoMapper project developed a (nano)material extension for ISA-JSON V1 [31]. A 
separate helper JSON schema is implemented for definition of all components of the NM. 
The composition of a NM may contain one or several components. Each component has a 
role (core, coating, etc.) and linkages to other constituents. The linkage describes the 
relation between two components. For example, two components may be covalently 
bonded, one being embedded or encapsulated within another constituent etc. 
 
The default approach for representation of chemical compounds in ISA-Tab [15] is an 
ontology entry, which typically points to a single chemical structure. This is insufficient 
for describing substances of complex composition such as NMs; hence, a material file 
was introduced to address this need in ISA-Tab-Nano [15]. The latest ISA-Tab-Nano 1.2 
specification recommends using the material file only for material composition and 
nominal characteristics, and to describe the experimentally determined characteristics 
in regular ISA-Tab assay files. 
 
The ISA-Tab-Nano project is an effort of the National Cancer Institute (NCI), National 
Cancer Informatics Program (NCIP) and Nanotechnology Informatics Working Group 
(US Nano WG) and an attempt to extend the ISA-Tab format by introducing a separate 
file for describing the (nano)material components. The ISA-Tab-Nano is documented in 
a publication [2] and in the US Nano WG wiki2, which included sample spreadsheets, but 
no tools to parse the files and to enforce the specification. For this reason, the practical 
use of ISA-Tab-Nano is not straightforward, as demonstrated by the efforts of the EU 
FP7 project NanoPuzzles [3] and the introduction of “ISA-Tab-logic” templates by the EU 
FP7 project NANoREG. 

5.5.1.3 EU NanoSafety Cluster Excel Templates 
 
NANoREG data logging templates for the environmental, health and safety assessment of 
NMs have been developed under the JRC's leadership within the frame of the EU FP7 
flagship project NANoREG [29]. A team of experts in different fields (physical-chemistry, 
in vivo and in vitro toxicology) has produced a set of easy-to-use templates aimed at 
harmonising the logging of experimentally produced data in the nanoEHS field. The 
templates are freely available to the nanoEHS community (Common Creative License – 
Share alike) [29] as a jump start towards the harmonisation, sharing and linking of data, 
with the purpose of bringing benefits to the data management at European level and 
beyond. They have a common first part to identify the sample under investigation; a 
second part aimed at recording basic information on the dispersion method adopted and 
to record the essential parameters used to fully describe an assay (the experimental 
settings); and a third one to log the experimental results. The experimental parameters, 
their values, together with the Standard Operating Procedure (SOP) linked to a given 
template, allow for a critical evaluation and/or comparison of the results of a given 
assay performed in different laboratories. This approach should also allow reproducing 
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the assay at a later stage. The structure adopted for the templates tries to reflect the ISA-
TAB logic, already widely used in 'omics' studies, while addressing the low user-
friendliness of ISA-TAB files, which limits its applicability in a “basic research laboratory 
environment”. 
 
In the summer of 2017, the Center for the Environmental Implications of 
NanoTechnology (CEINT) led a stakeholder input process to expand the ISA-Tab-Nano 
logic templates and to propose two new functional assay templates capturing data on 
attachment efficiency and dissolution rate. The expansions that the templates would be 
poised to incorporate additional metadata, i.e., regarding sample preparation, instances 
of characterisation, and media characteristics necessary to track NM transformations 
(http://ceint.duke.edu/research/nikc/isa-tab-nano). The various adoptions and 
adaptations of ISA-TAB-Nano, which was from the start intended as a flat file-sharing 
format, provide a spreadsheet-based solution for informing and organising comparable 
datasets, which is consistent, but not convenient. The templates represent an important 
incremental step toward harmonisation of data, but one that must be surpassed in 
straightforwardness and ease of use to attract sufficient utilisation for amassing 
significant data. 
 
A separate set of Excel templates were developed by the Institute of Occupational 
Medicine (IOM) (http://www.iom-world.org/) and have been used to gather data in 
several EU FP7 projects (NANOMMUNE, NanoTEST, ENPRA, MARINA, NanoSolutions, 
SUN) and the COST action MODENA. These were originally derived in association with 
the JRC NanoHub from the OECD Harmonised Templates to provide simplified subsets 
for data collection. They provide a practical format for end-users collecting the results of 
physico-chemical, in vitro and in vivo toxicology, and more recently eco-toxicology data 
for a variety of experimental assays addressing nanoEHS. Whilst arranged differently, 
concentrating on the collection of results, they reflect the principles and include most of 
the essential metadata features of the ISA-TAB logic, with test method description 
information and the inclusion of relevant SOPs mandatory requirements. They currently 
lack systematic links to ontology resources, but have been successfully parsed 
programmatically and the data has been uploaded for further use in the eNanoMapper 
database infrastructure.  
 
Given their relative practicality for end users it is currently proposed within the EU 
NanoSafety Cluster (EU NSC) that the best features of the Cluster Excel templates 
described above, with required ISA-TAB logic and ontology features, should be 
combined and exploited for the mutual benefit of the end-user in the research 
laboratory environment, their sponsoring projects, and, with the data ultimately 
included in shared nanoEHS database(s), for greater long-term community use in a 
harmonised manner. 

5.5.1.4 Semantic Web Formats 
 
The semantic web has been introduced as the next generation world wide web, aimed at 
integrating data and knowledge from different online information sources [32]. To 
implement this idea of a semantic web, the W3 Consortium has developed the Resource 

http://ceint.duke.edu/research/nikc/isa-tab-nano
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EU US Roadmap Nanoinformatics    

 
 

27 

Description Framework (RDF, https://www.w3.org/RDF/) and a series of 
complementary standards to work with RDF, such as serialisation formats like JSON-LD, 
RDF/XML, and Turtle [33-35]. Since ontologies can also be expressed in RDF, for 
example with the Web Ontology Language (OWL) [36], this is increasingly adopted as 
implementation for the FAIR data requirements. This RDF approach was adopted by the 
eNanoMapper project and data provided by the eNanoMapper database can be 
downloaded as RDF data [37], using the eNanoMapper ontology. With the semantic web 
serialisation, eNanoMapper proposed an approach for data completeness testing and for 
answering scientific questions [38]. 

5.5.1.5 Format Conversions 
 
ISA provides documentation and tools for conversion between ISA-Tab, ISA-JSON and 
ISA-RDF formats [39]. Tools for conversion between several data formats (Excel 
templates, ISA-Tab, ISA-JSON v1, OECD HT and semantic formats) have been developed 
by eNanoMapper [31]. These tools also enable automatic generation of ISA-JSON files 
from supported input formats (e.g., NANoREG templates). If needed, the ISA-JSON files 
can be translated into legacy ISA-TAB via the tools provided by the ISA team. Export to 
ISA-JSON is enabled for each data collection of the eNanoMapper database. Another 
example of a web-based data system for unstructured datasets with a metadata system 
for dynamic generation of tabulated data is NanoDatabank [40]. 

5.6 Getting Data Out - Support for Data Analysis 
 
The ultimate goal of a nanosafety data infrastructure extends beyond data retrieval and 
collocation of similar studies. It includes enabling data analysis and data modelling for 
several purposes such as theory development, classification/grouping and read-across, 
weight-of-evidence approaches, regulatory risk assessment and management, or for 
decision-making, such as in stage-gate models, which are often utilised in research 
development and innovation processes where specific gates require differently detailed 
information of the material in order to decide on whether or not to move to the next 
stage. 
 
There are potentially conflicting metadata requirements by the different types of users 
and use cases. The representation of data compatible with regulatory expectations and 
(inter)national standards usually translates into a set of ‘robust’ study summaries 
(rarely raw data) for a given NM. The modelling community presents a different 
requirement: data analyses usually require a “spreadsheet” or matrix view of data for 
multiple NMs. The experimental data in the public datasets are usually not in a form 
appropriate for modelling. Standardisation in these sources is specific to each database. 
Even in curated collections, the preparation of data for modelling is not straightforward 
(e.g., the experimental values can be merged into a matrix in many different ways, 
depending on which experimental protocols and conditions are considered similar; also, 
there could be multiple values due to replicates or similar experiments). 
 

https://www.w3.org/RDF/
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A number of recommendations (computational and strategic) for data curation [10, 14] 
relate to the ability of a data management system to support data analysis, data mining 
and seamless integration with modelling tools. The first level of support is to be able to 
download a user-selected subset of the data to be further processed by a modelling 
package. The next level is the ability to export data programmatically, allowing 
integration into third party systems and workflow engines (e.g., the Konstanz 
Information Miner analytics platform KNIME). Another level of integration is providing 
unified access to data and analysis tools in addition to the data querying facilities. This 
could be done by either wrapping a selected set of statistical/ machine learning 
packages into the database application, or using remote modelling or prediction services 
by submitting computational tasks and obtaining results transparently to the user. All 
these approaches have pros and cons and have been reviewed several times in the 
context of safety assessment of chemicals [41, 42]. 
 
For eNanoMapper, data access support is implemented through a REST web services 
application programming interface (API), allowing one to search, retrieve and upload of 
NMs and experimental data. The API [43] is used to interact with a number of modelling 
tools developed within eNanoMapper project and is publicly available [44]. Other 
approaches that link data with tools for high throughput toxicity data processing and 
model building, assessing the multimedia distribution of NMs and utilisation of decision 
support tools are included in the nanoinformatics platform www.nanoinfo.org [45]. 

5.7 Metadata 
 
Metadata are, very broadly speaking, “data about the data”. The distinction between data 
and metadata can vary widely across different disciplines; for example, in some cases 
metadata is conceived only as the bibliographic information that allows tracing the 
source of the information set, where in other cases, the term might apply also to 
quantitative data that describe how (standard methods) or when (temporal specificity) 
a measurement was taken. Without focusing on a single definition and for the purpose of 
this roadmap, we consider metadata to be another lens through which to examine 
whether the data being recorded include sufficient information to sort, evaluate, 
compare and analyse them effectively at a later time. Moreover, it is important to note 
the need for fit-for-purpose considerations with regard to data and metadata, regardless 
of how one distinguishes between them. Whether there is sufficient information to 
support a desired combination, comparison and analysis of a dataset depends entirely 
on what research questions and relationships are being investigated [13].  
 
As an example of how metadata vary among studies or contexts, one can consider 
human toxicology and ecotoxicology studies. For human toxicology, the metadata 
consists mainly of pristine particle characterisation data, test methodology, and dosing 
protocols, which are then related to the “primary” observational data on detailed sub-
lethal endpoints. In contrast, the observed endpoints of ecotoxicology studies can often 
be much simpler, e.g., survival, and the relevant metadata required to describe the 
exposure will generally be significantly more extensive. For ecotoxicity the exposure 
system (i.e., the environmental compartment components) may interact with the NM, 

http://www.nanoinfo.org/
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resulting in transformations in the material form actually encountered by the receptor 
[46, 47]. In fact, realistically, actual exposures to materials in the environment for plants, 
animals and humans alike will involve similar transformations, both before reaching and 
after entering the organism, such that the relevant form will be dependent on 
surrounding media, the exposure pathway, and other external factors. In practice, these 
transformed particles are difficult to measure in situ using routine techniques; yet, the 
true form of a material that a receptor encounters and the exposure conditions are 
highly relevant to understanding a resulting toxic response.  
 
Because NM transformations are such a pivotal determinant of the outcome(s), it is not 
enough to know what you put into your ecotoxicology system, and what medium it was 
you put it in. There are multiple system dependencies that determine the 
transformations. The metadata requirements for capturing enough parameters to be 
able to model the fate of a NM in the environment and ultimately the exposure driving 
the observed effects are extensive. The importance of this can be seen in such examples 
as low dose chronic NM exposures in complex systems, where providing only 
information on what material was added to the system, would not allow for predictions 
of the toxic responses. In this case, absence of detailed metadata describing all biotic and 
abiotic system constituents and temporal variations in environmental conditions such 
that interactions can be interrogated would absolutely preclude interpretation of the 
results. 

5.8 Ontologies  
 
Ontologies are tools to formalise the language used to exchange knowledge. The 
necessity for such tools for the nanoEHS community was clearly demonstrated and 
resulted in a project call within the EU FP7 program in 2012, which led to the formation 
of the eNanoMapper consortium. A similar need has been recognised by the materials 
modelling community through actions taken by the European Materials Modelling 
Council (EMMC, https://emmc.info/). This section provides an overview of current 
ontologies useful in nanoEHS research. Nanoinformatics examples include the 
incorporation of the Gene Ontology [48], the annotation of data in databases by 
eNanoMapper [49] and the dynamic classification scheme of NanoDatabank [39]. 
 
As with the physical and biological sciences, there is a range of ontology tools that in 
turn raise questions about standardisation, consistency, traceability and accessibility. 
For example, collaborative ontology development between materials modelling and 
nanoEHS in the context of Basic Formal Ontology (BFO) would lead to a common 
framework with high synergy potential for studying and documenting materials, their 
applications and safety. Overall, the Roadmap’s purpose is to encourage progress where 
progress is possible, but within the context of eventual usefulness in risk assessment. In 
that sense, progress will be tempered by regulatory framework considerations involving 
chemical identity (see Section 12.3) and validation (Sections 6.4.1 and 12.4.). 
 
To make it easier to reuse a common language, once developed, various tools are 
available to use ontologies. Table 2 shows general ontology tools, but it is important to 
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realise that many specific tools use ontologies too. For example, a database may use the 
ontology to provide faceted searching.  
 
Table 2: An overview of generic ontology tools. 
 

Ontology Tool Description 

BioPortal 
http://bioportal.bioontology.org/  

Searchable registry of ontologies. 

OBO Foundry 
http://obofoundry.org/  

Community project to develop and maintain ontologies in 
biology. 

Ontology Lookup Service 
https://www.ebi.ac.uk/ols/  

Searchable registry of ontologies. 

Protégé 
https://protege.stanford.edu  

Free, open-source ontology editor and framework for 
building intelligent systems to view, search, and edit OBO 
and OWL ontologies. 

Webulous 
https://www.ebi.ac.uk/efo/webulous/  

Platform of a server and a Google Spreadsheet plugin that 
allows using ontologies in spreadsheet. 

Ontology Slimmer 
https://github.com/enanomapper/slim
mer/  

Java library that support remixing of existing ontologies. 
Used to create the eNanoMappper ontology. 

 

5.8.1 NanoParticle Ontology 
 
The NanoParticle Ontology (NPO) was created out of the need to standardise data 
description in cancer nanotechnology research and enable searching and integration of 
diverse experimental reports. It covers various aspects of NM description and 
characterisation, including chemical components of NMs, NM type, physico-chemical 
properties, experimental methods and applications in cancer diagnosis, therapy and 
treatment [50]. 

5.8.2 eNanoMapper Ontology 
 
The eNanoMapper ontology is a typical application ontology aimed at addressing needs 
of the community [51]. This is in contrast to the demanding work of defining internally 
consistent ontology (see for example [52]). Instead, by reusing (and occasionally 
extending) existing ontologies this approach aims to reflect the various sub-domains of 
the nanoEHS community. The current ontology [53] builds on several other ontologies, 
including the Basic Formal Ontology (BFO), the NanoParticle Ontology (NPO), the 
BioAssay Ontology (BAO), the Chemical Information Ontology (CHEMINF), the Ontology 
of Chemical Entities of Biological Interest (CHEBI). The ontology releases are built by an 
automated environment that selects parts of these ontologies and integrates them into 
an ontology with exactly one ontology term for each concept. Guidance documents 

http://bioportal.bioontology.org/
http://obofoundry.org/
https://www.ebi.ac.uk/ols/
https://protege.stanford.edu/
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demonstrate how other controlled vocabularies map to this ontology, including a list of 
OECD NMs [54] and the JRC representative NMs [55]. 
 
The ontologies existing at the time of the eNanoMapper project that were related to 
modelling offered only fragmented coverage, with term definitions that were quite often 
oriented at the specific work or needs of the ontology they were a part of. In order to 
better describe nanoinformatics modelling actions and results, 162 terms were added to 
the eNanoMapper ontology, describing experimental and calculated (Image Analysis and 
algorithm-derived) descriptors, the processes that lead to their generation, modelling, 
statistics and algorithms [56].  

5.8.3 NanoDatabank Ontology 
 
The use of a classification scheme to build an ontology for data entry and associated 
metadata was developed using a flexible dynamic metadata entry (i.e., both structured 
and unstructured datasets) and organisation in the NanoDatabank system, which is 
web-accessible [40].  

5.8.4 CHEMINF Ontology 
 
The Chemical Information (CHEMINF) ontology was set up to improve the 
interoperability of chemical information and data [57]. It reuses concepts from other 
ontologies, like the Basic Formal Ontology (BFO), the Semanticscience Integrated 
Ontology (SIO) and Chemical Entities of Biological Interest (CHEBI) and extends this 
with the notion that there is information about chemical compounds. This includes a 
chemical graph, names, identifiers, etc. Importantly, it also formalises how to capture the 
difference between measured and calculated properties. The eNanoMapper ontology 
uses this ontology for NM identifiers and for computed properties. 

5.8.5 BioAssay Ontology (BAO) 
 
The BioAssay Ontology (BAO) aims to address the need for describing and annotating 
biological assays in a standardised way. Experimental data is organised in “measure 
groups”. A measure group can be annotated with an endpoint, screened entity (e.g., 
chemical or NM), assay method and participants (e.g., biological macromolecule). A 
bioassay may contain multiple measure groups. The measure groups could be combined 
to create “derived” measure groups (e.g., IC50 is a derived measure from dose response 
data) [58]. BAO has been used for annotation of a large number of HTS assays in 
PubChem [59] and is used in Open Access ChEMBL database with chemical-protein 
affinity data. BAO is not a NM-specific ontology, but provides a useful data model for 
describing bioassays for arbitrary screened entities. The description of the screened 
entities is expected to come from elsewhere. 
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5.8.6 Materials Modelling Ontology Activities 
 
The European Commission published a Review of Materials Modelling (RoMM), now in 
its 7th edition, which provides a classification of materials modelling that enables a 
coherent description of materials modelling and a standardised documentation of 
simulations (called “MODA”) of materials [60]. It applies the MODA documentation to a 
compendium of applications illustrated by EU H2020 LEIT NMBP Materials projects. 
Based on the above review, the European Materials Modelling Council (EMMC) proposed 
a CEN Workshop Agreement (CWA) about "Materials modelling - terminology, 
classification and metadata" [61], endorsed by more than 15 European Organisations 
with the objectives of standardisation of terminology, classification and documentation 
of materials modelling and simulation. The EMMC initially proposed a European 
Materials Modelling Ontology (EMMO) [62], which extended the Basic Formal Ontology 
(BFO) to address the granularity levels of materials (atomistic, electronic, mesoscale and 
continuum) and hence supports the perspectives important to nanoEHS, e.g., 
nanostructure. In due course, the EMMC decided to deviate from the BFO and build an 
ontology that would be a better fit for the needs of the community [63]. 

5.9 Data Exchange 

5.9.1 Data Sharing 
 
There is significant momentum towards greater access to journal articles, databases and 
government reports that will allow interested parties and the public in general to have a 
fuller range of nanoEHS data available for examination. While impediments will 
certainly lessen, it is unlikely that there will be full access to all data without some 
requirements being placed on data sharing. From that standpoint, those administering a 
database should establish an appropriate policy similar to steps they will take for 
ensuring data security (avoiding intrusions or unauthorised changes to data entries). 
The data user should, in turn, realise that the data accessed may be incomplete and use 
professional judgement accordingly. 
 
Offering some examples of limitations that might be placed on data access is 
appropriate. Where academic colleagues will wait for the peer review process to be 
completed before releasing data, the industrial colleagues will wait for a patent to be 
allowed. For both, there may be issues of attribution, which would encompass 
authorship on papers that utilise an investigator’s dataset or payment in the case of a 
company-sponsored study for a REACH dossier. Competitive pressures and anti-trust 
laws will influence company decisions, while project proposals, thesis requirements and 
intent to patent and commercialise may be prominent for some academics. For many of 
these examples, the remaining data access impediments can be resolved through setting 
time limits on data embargoes, but for others, especially those data critical to a 
regulatory decision, industry will argue for confidential business information or trade 
secret status. 
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In terms of data sharing, the experiences with model organisms are illustrative of the 
above considerations. As described by Leonelli and Ankeny [64], the Caenorhabditis 
elegans and Arabidopsis thaliana communities of research have been more successful 
than their Drosophila melanogaster and Mus musculus counterparts in standardising on 
specific strains of those species, central stock source and sharing of information. Smaller 
community size and a more pressing need to leverage limited research funding are 
advantages to Caenorhabditis elegans and Arabidopsis thaliana progress, while selecting 
one strain for preferred study is disruptive to suppliers and investigators attached to the 
strains not selected and becomes a disadvantage to the Drosophila and Mus musculus 
communities. As a multi-disciplinary effort, great care has been taken that the 
Nanoinformatics 2030 Roadmap itself be a tool fostering community interactions 
through both its description of current challenges and its suggested milestones.  
 
Another important step towards advancing knowledge through sharing of NM datasets 
will be accomplished through the wide availability of online modelling capabilities. The 
current picture, where users first find NM data online, must download the datasets in 
order to process them offline for modelling and then possibly re-upload any results (if 
they ever do so), makes little sense and severely slows down the advancement of 
knowledge. Online modelling (or Cloud modelling) infrastructure that makes available 
both nano-specific modelling and mathematical modelling tools is necessary to bring 
sophisticated tools and methodologies to a wider audience with a more moderate 
learning curve, ease of use and reduced or no costs. Such activity is, inevitably, 
dependent on appropriate and responsible data curation to ensure that high quality and 
complete datasets are provided, and that each study is screened appropriately. 
Otherwise creating validated and accurate models in a cloud-based manner becomes 
impossible. Augmented by advanced Nanoinformatics tools, datasets will be enriched, 
allowing better decision making at a shorter cycle time. Α global scope platform that 
provides access to mathematical modelling and nano-specific functionalities is Jaqpot 
Quattro (http://jaqpot.org), developed within the eNanoMapper project. Apart from a 
variety of algorithms for regression and clustering, users can perform Read-across, 
Optimal Experimental Design and Interlaboratory Comparison [44], supporting through 
both knowledge extraction from existing datasets and intelligent generation of 
consistent new data. There can be diverse motivations and requirements for each group 
of users (i.e., academia, industry etc.) that wishes to perform modelling work. At the 
same time, there can also be diverse platforms with clearly defined features that suit 
each group's purpose. The first such stakeholder-driven platform for NMs risk modelling 
and risk management decision making is the SUNDS system that was developed by the 
EU FP7 project SUN (http://www.sun-fp7.eu/sunds/). This online platform and the 
web-based System of Systems of the EU H2020 project caLIBRAte are growing in 
parallel to eventually form an integrated, interoperable data and modelling decision 
support infrastructure. This internet-based infrastructure will be capable of making 
efficient use of the available data for predictive modelling of possible risks from both 
legacy and novel NMs, as well as for the assessment and management of these risks 
according to regulatory requirements. 
 
An approach to data sharing has been recently incorporated in the web-based 
nanoinformatics platform (www.nanoinfo.org) [45], which provides a centralised data 
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management system (NanoDatabank) with various levels of data access/security to 
allow and promote safe data sharing and storage. The system allows for the formation of 
user groups and integration of data with a range of data converters and modelling tools 
for predicting toxicity, fate and transport, and interrogation of complex datasets via 
machine learning approaches. 
 

5.9.2 Open Science 
 
The European Commission has adopted the notion that concepts like Open Science and 
FAIR data (i.e., Findable, Accessible, Interoperable, Reusable data) benefit the European 
industries (covering both, Small and Medium Enterprises, SMEs and Large Enterprises, 
LEs) [65]. The FP7 and H2020 projects have adopted policies around Open Access and 
Open Data publishing, with great respect of sustainability of existing industries. Open 
Science is about being able to reuse existing knowledge and finding its origin in the 
American Open Source community. They noted in the late nineties that the basic rights 
of being able to use and reuse disseminated knowledge, modify knowledge (curate it, 
extend it), and redistribute the outcome of that reuse should be protected. This section 
describes some initiatives important to the nanoinformatics community. 

5.9.2.1 European Open Science Cloud (EOSC) and Research Data Management 
 
The European Commission is promoting open science data, supported by freely 
accessible infrastructure. OpenAire integrates institutional repositories and also 
provides the Zenodo repository to upload research output (datasets and publications) 
files up to 50GB. Zenodo is hosted at CERN and funded by the EU and CERN and provides 
integration with DropBox and GitHub. Users can define collections and communities, 
and configure the uploaded files for restricted access and embargo periods. 
 
While Zenodo serves mainly archival purposes, the pan European collaborative data 
infrastructure (EUDAT) provides generic data services, such as storage and computing 
services to European researchers and research communities, and offers a joint metadata 
service integrating metadata from different communities into easily searchable and 
open catalogues. There is a number of services implementing cloud facilities: B2ACCESS 
(Authentication and Authorisation, identity provider, implemented by Unity IDM); 
B2DROP (offering cloud services using own cloud), B2SHARE (providing file sharing); 
B2STAGE (file transfer services, based on iRods data management system and GridFTP); 
B2SAFE (providing replication and data management policies); B2FIND (implementing 
metadata search), and finally BHOST (allowing custom applications to be integrated 
within the EUDAT infrastructure). 

5.9.2.2 Infrastructure for Open Science 
 
There are various approaches to establish an infrastructure for open science, and both 
have traction. Firstly, there is a grassroots approach of addressing many parts of the 
needed infrastructure, but without integrating them into a single platform. For example, 
a publication is published in a scientific journal, data are hosted on Zenodo, source code 
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on GitHub, and a mailing list with Google Groups. Secondly, one may establish a single 
platform for everything, which used to be popular. What matters, however, is that 
services follow the FAIR data principles (i.e., Findable, Accessible, Interoperable, 
Reusable data). Particularly, interoperability allows linking of components and reduces 
the chance of vendor lock-in [3]. 
 

5.10 Sustainability  
 
Objective 2 of this roadmap addresses the overarching goal that all publicly funded 
research data should be deposited in a sustainable database or knowledge resource. The 
sustainability of databases and knowledge resources created by different research and 
development activities is a complex multifactorial goal. What does this mean in practice? 
If, as part of a publicly-funded nanoEHS project, a laboratory has conducted valuable 
experiments, which have yielded credible results, that laboratory and others should be 
able to access those results in the future, e.g., five years after the project ends, and make 
sense and use of them in a reliable way. The following elements are key to achieving this 
goal with regards to nanoinformatics: 
 
1) Agreement on best practices at the project start regarding experimental design and 
peer-reviewed data management plans (DMPs), including consideration of the end use 
of the data. 
2) Data generated throughout the project should be well documented with regards to 
protocols, templates and metadata, and data processing workflows. Provision of data 
access, including review and testing, to the nanoEHS knowledge infrastructure, by the 
curator should be accomplished in a timely manner during the project, (even if 
authorisation controls are needed). 
3) Education and training on data science for project team members should be 
completed early in the project. Interdisciplinary interactions between younger scientists 
within networks should be supported. This will be a core task addressed by 
NanoCommons (https://www.nanocommons.eu), the H2020-funded research 
infrastructure for nanoinformatics, which has a work package dedicated to training as 
part of its community building activities. NanoCommons will also operate a Helpdesk 
offering support to the community in all aspects of nanoinformatics, starting in early 
2018. 
4) The FAIR principles (i.e., Findable, Accessible, Interoperable, Reusable data) should 
be followed with regards to access to scientific data resources (refer to objective 2). 
5) Data resource completion (e.g., according to FAIR), including a resource review, 
should be delivered alongside the reporting and publication of the scientific results of 
projects. 
6) A cluster and community wide data governance framework should be established to 
facilitate data sharing and interactions around data. For example, a simplified process 
and legal framework for data sharing between projects and programs would be 
beneficial. Within the EU this could be accomplished within the EU NSC. 
 

https://www.nanocommons.eu/
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However, clearly a more comprehensive vision would be to establish longer-term 
knowledge infrastructure programs, which are actually required to ensure sustainability 
of scientific resources beyond the end of specific, individually funded projects. Such 
infrastructure programs can address issues of engineering, robustness, performance, 
quality control, review, maintenance, and support of nanoinformatics projects, which 
are often not addressed sufficiently during research projects, and are often completely 
neglected after the completion of projects. OpenRiskNet (https://openrisknet.org) is 
such an example where data services of relevance to safety assessment will be driven by 
the needs of the nanoEHS community. The infrastructure project has the EU NSC as a 
customer. International cooperation between EU and US programs should support the 
development of interoperable services, common data templates and shared data 
curation and are an opportunity for infrastructure programs to align, harmonise and 
avoid unnecessary costs from duplication. 
 
Longer-term community infrastructure programs such as NanoCommons (starting the 
beginning of 2018) provide a common ground for the international community to work 
together on sustainability of community resources and aid in the development and 
incorporation of a common language (ontology), best practices and knowledge sharing 
supporting excellence and governance. Programs such as NanoCommons should also be 
an opportunity to strengthen international cooperation between EU and US scientists 
working on related informatics problems, and to interact and collaborate with 
establishments and agencies (such as EU ECHA and US EPA) on the long-term provision 
of access to information resources to all stakeholders. 
 
A mechanism for fostering a good progression from development of new methods, tools, 
ontology and best practices, to efforts within standards groups (such as ISO, ASTM, 
OECD) to develop documentary standards and test methods used within industry and 
obtaining regulatory acceptance should be outlined. Although it can be said that some 
tests in their current form are considered acceptable, or are acceptable with minor 
adaptation (refer to the REACH Implementation Project on Nanomaterials, RIPoN and 
ECHA guidance R7a-c). Such guidance could be included in documents specifically for 
difficult to test substances, much in the same manner as in the OECD “Guidance 
Document on Aquatic Toxicity Testing of Difficult Substances and Mixtures” and others. 
Simply adding to existing frameworks eases cost and time, and makes the 
implementation more efficient and accessible. 
 
All initiatives should involve a strong consultation with industry and societal 
stakeholders so as to ensure that resources are created that satisfy needs and have 
utility. 
   

https://openrisknet.org/
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6. Nanochemoinformatics and Statistical Modelling 
 
Tomasz Puzyn1, Geert Verheyen2, Sabine Van Miert2, Baoshan Xing3, Sarfraz Iqbal1, Qing 
Zhao4, Vladimir Lobaskin5, Gianpietro Basei6, Anastasios G. Papadiamantis7, Yoram 
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1 University of Gdansk, Gdansk, Poland 
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4 Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China 
5 University College Dublin, Dublin, Ireland 
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6.1 Introduction 
 
The term ‘nanochemoinformatics’ refers to the application and appropriate adaptation 
of chemoinformatic methods for solving nanotechnology-related questions. Nowadays, 
such methods are mainly developed for regulatory purposes, i.e., for hazard and 
exposure assessment. For conventional (i.e., non-“nano”) chemicals methods such as 
QSAR modelling are increasingly applied, primarily within integrated assessment and 
testing strategies. However, the application of nanochemoinformatics methods is not 
limited to nanoEHS, but also covers a broad range of other purposes such as NM 
functionality. 
 
The term “chemoinformatics” is derived from “chemical information” understood as 
information regarding chemical structure. Information about different aspects of 
chemical structure can be encoded by a set of quantitative characteristics (e.g., the 
number of functional groups of a given type, the angle between two selected rings), 
which are generally referred to as ‘descriptors‘.  
 
Data for nanochemoinformatics modelling is usually collected in matrices (tables), 
where rows represent individual NMs and columns correspond to descriptors (Figure 
3). Such a matrix (usually referred as X-matrix) can then be used for analysing 
similarities between NMs (profiling), which mathematically refers to searching for 
similarities between the row vectors in the matrix. NMs may be clustered together 
(grouped) by analysing the similarity of their descriptors by means of various 
hierarchical and non-hierarchical unsupervised algorithms such as Hierarchical Cluster 
Analysis (HCA), Principal Component Analysis (PCA), and Density-Based Spatial 
Clustering (DBSCAN). In any case, care must be taken on the assumptions (e.g., 
normality, linearity) each algorithm employs for the analysis and the conclusions 
reached to be statistically valid. That’s why linearity (e.g., Durbin-Watson test) and 
normality (e.g., Shapiro-Wilks test, Q-Q plots) checks should be performed prior to 
analysis for selecting the most appropriate algorithm. 
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Figure 3: Data matrix for nanochemoinformatics modelling. Nanochemoinformatics data sets are 
assembled in matrices, where rows represent various NMs and columns represent various descriptors of 
the NMs. This matrix is later analysed with respect to its relation to other specific information for these 
NMs such as data on toxicity covering specific toxicological endpoints (y).  
 
In the context of hazard and exposure assessment, nanochemoinformatics methods are 
mainly applied for filling data gaps. Techniques used for this purpose help reducing the 
bias originating from smaller datasets, which is allowable as long as the assumptions 
they employ are not violated [66]. In such cases, an additional vector representing the 
data on a specific toxicological endpoint of interest is used (y-vector, Figure 3). The 
underlying idea is to use the descriptor matrix X and the existing elements of the 
endpoint vector y to estimate the absent elements of the endpoint vector y (indicated as 
unshaded cells with “?” in Figure 3). This means a set of descriptors (X) is used to 
estimate data-elements of an incomplete vector of descriptors (y-vector). There are 
three data filling approaches, namely:  
 

(i) (Quantitative) Structure-Activity Relationships methods, which for NMs often 
are abbreviated as Nano-QSAR, Quantitative Nanostructure-Activity 
Relationships (QNAR) or Quantitative Nanostructure-Toxicity Relationships, 
(QNTR); 

(ii) trend analysis; and  
(iii) read-across. 

 
In the following sections, the state-of-the-art with respect to nanochemoinformatics as 
well as future developments to render existing methods more useful are discussed, 
especially from a regulatory point of view. 

6.2 Descriptors 
 
In nanochemoinformatics, the descriptors encode the information about the 
composition, structure, and properties of NMs. Such descriptors refer to [67]: 

● chemical and physical identity of NMs such as size, shape, particle architecture 
(i.e., core and coating), chemical composition of that architecture; 
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● intrinsic properties of NMs such as crystal structure/crystallinity, purity, surface 
area and rugosity, porosity, surface functionalities; 

● extrinsic (i.e., system-dependent) properties of NMs such as electrophoretic 
mobility/zeta potential, biological corona, degree of aggregation/agglomeration, 
dissolution, surface reconstruction, sorption, surface reactivity and persistence. 

 
Descriptors can be experimentally measured properties, usually related to the 
physical or chemical identity of NMs, and theoretical descriptors, which are derived 
from the electronic, atomistic and molecular structure of NMs and their immediate 
environment. Section 6 mainly focuses on descriptors as experimentally measured 
properties while Section 7 puts emphasis on theoretical descriptors. For the purpose of 
predictive modelling, any quantitative characteristic that can be consistently measured 
or calculated in a controlled and reproducible way can serve as a NM descriptor. In some 
cases, data on NM biological activity such as data for specific toxicity endpoints (e.g., 
mutagenicity or cytotoxicity expressed as EC50/IC50) might be used as descriptors as 
well. However, since this is not a purely chemical or physical type of information, such 
data have mainly found application in Quantitative Activity-Activity Relationships 
(QAAR) modelling. Generally speaking, the term ‘descriptor‘ may have a broad use in the 
modelling field.  
 
Note: The terms ‘descriptor‘, ‘identity‘ and ‘representation‘ have specific, well-defined 
meanings in informatics and modelling. Thus, as mentioned in Section 5, establishing a 
common language is an overarching challenge in nanoinformatics. Rows in the matrix in 
Figure 3 represent individual NMs. However, the definition of NMs or nanoforms in a 
regulatory context may include parameters related to their chemical and physical 
identity. In chemoinformatics, molecular structure has primacy to define the identity of 
chemicals. For NMs, particle architecture, size, shape or coating composition are 
distinguishing NM attributes that must be accounted for by the database curator, the 
modeller or the user. Such issues can be resolved by experience and professional 
judgement. As a step forward, a physical NM model is proposed in Section 12.3. 
 
The development of predictive (eco)toxicity models for conventional chemicals relies 
heavily on the availability of appropriate chemical descriptors that tie relevant aspects 
of the molecular structure and physico-chemical properties to the NM under 
investigation. Well-defined and robust descriptors are essential for correct modelling 
(i.e., highly predictive and accurate models). The base set of descriptors (the X-matrix) 
should satisfy the following criteria [68]:  
 

● ideally should allow a structural interpretation; 
● have significant correlation with at least one property; 
● are not trivial correlations of other base set descriptors; 
● exhibit gradually changing values with incremental changes in molecular 

structure; 
● are not restricted to a too small class of substances. 

 
Descriptor quality and relevance are even more important for NMs as NMs require a 
larger number and different types of descriptors to account for their distinct properties 
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due to several factors. The evaluation/extraction of pertinent descriptors in predictive 
toxicology for NMs have been suggested for planning and interpreting toxicity studies, 
as well as for providing guidance to tailor-designed NMs with respect to specific toxicity 
targets. Minimum data sets of NM descriptors required for predictive modelling 
encompass information on their chemical composition and intrinsic properties, which 
are specific for the NM but independent of the system. The system, which is influencing 
extrinsic properties, can be the matrix of a specific product (i.e., a specific formulation) 
or a specific biological environment. Unfortunately, many datasets that are currently 
available for NMs are incomplete and unsystematic [69]. The selection of the most 
appropriate descriptors is invariably model dependent (i.e., supervised descriptor 
selection). There are several approaches for description selection from a pool of 
descriptors. They must consider the redundancy of information provided by certain 
descriptors as well as the range of descriptor values and information provided. In such 
an approach, an unsupervised descriptor selection (or pruning) can be accomplished, as 
described for example by Liu et al. [70]. 
 
For chemicals, a hierarchy of descriptors can be derived already from the molecular 
structure. Molecular descriptors typically relate to steric and electronic properties of the 
compound and can be measured experimentally or determined computationally. 
Depending on the information content, descriptors are usually classified according to 
their dimensionality in 0D, 1D, 2D, 3D or 4D descriptors [71]. 0D or constitutional 
descriptors (e.g., molecular weight, atom number counts) do not consider the molecular 
structure; 1D descriptors like Log Kow capture bulk properties; 2D descriptors are 
derived from molecular connectivity and 3D descriptors take the 3-dimensional 
geometry of the molecule into account. The 4D descriptors are used to describe the 
interaction field of the molecule or to describe different conformations of the molecule. 
 
In the case of NMs, the composition and the chemical structure often do not reflect the 
most relevant properties for the activity, which may be linked more closely to the 
engineered or spontaneously modified surface. These interfacial properties can be 
context-dependent and may be affected by the surrounding matrix. Therefore, the 
primary descriptors (i.e., chemical composition and intrinsic properties) may not be the 
best-suited descriptors to predict the toxicological effects for NMs. Moreover, NM 
properties can be interdependent, meaning that by changing one property several other 
ones can be affected too [72]. To tease out these relationships, reliable experimental 
data should be available to allow the development of models (and descriptors) that 
describe the relationship and that can subsequently be used to classify related NMs. One 
approach suggested by Lynch et al. [72] is to identify 3 overarching descriptors (based 
on principal components analysis of observed variables) that describe intrinsic 
properties, extrinsic properties and composition aspects of NMs. These can then be 
related to the endpoints to be modelled. In another recent study, Oh et al. performed an 
exhaustive correlation/significance analysis of both quantitative and categorical 
descriptors to correlate the cellular toxicity of quantum dots [14]. This is a suitable 
approach to identify inter-associations of descriptors and their impacts on the cellular 
toxicity of quantum dots. 
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From chemoinformatics perspective, the most extensive research has been performed 
for metal oxide NMs. Ying et al. [73] investigated coated and uncoated metal oxide NMs 
with respect to their toxicity. For coated metal oxide NMs structural descriptors 
describing the organic surface modifications were the key factors influencing the 
toxicity. Thus, this part of the study could be referred to as an organic chemicals QSAR 
study. For the uncoated metal oxide NMs, the experimental descriptors covered 
morphological structural properties such as size distribution, shape, porosity, etc. and 
physico-chemical properties such as zeta potential, pKa, surface charge, etc. Several 
methods are available and established to measure and/or extract these properties, e.g., 
[74]. Depending on the NM type, different parameters may be more relevant. Additional 
descriptors can be derived from these measurements, such as surface/volume diameter, 
aspect ratio or sphericity [75]. 
 
In contrast to descriptors for conventional chemicals: 
 

a) a descriptor matrix for nanochemoinformatics rarely consists of calculated 
(computational) descriptors only; usually experimentally-derived descriptors are 
used as well 

b) experimentally-derived descriptors should consider not only intrinsic, but also 
system-dependent (i.e., extrinsic) properties of the NMs 

c) computational descriptors cannot be simply calculated from a single molecular 
model because of hardware limitations, but separate simplified models 
representing various aspects of the structure, e.g., surface, aspect ratio, are 
needed 

 
Therefore, the most important challenge for future nanochemoinformatics studies is the 
extension of currently used descriptor sets. This can be divided into several specific 
tasks: 
 

1. Extension of descriptor sets to better reflect system-dependent (i.e., extrinsic) 
properties 

2. the development of new, preferably computational, descriptors that enable 
various aspects of the nano-structure to be comprehensively described 

3. the development of simplified computational methods and/or molecular models 
(e.g., coarse-grain molecular mechanics) that enable calculating descriptors in 
efficient ways 

 
Chemoinformatics relies on descriptors that represent chemical composition. The 
principles of chemoinformatics were established for drug and agrochemical design and 
accordingly the greatest depth of experience is available in that area. For the context of 
drug design, the chemical composition is primarily an organic molecule with an internal 
structure built on covalent bonds and functional groups. The molecule is in solution and 
many properties are measured at equilibrium. Polymers are commonly represented by 
monomer units. In contrast, chemical composition for inorganic and metallic NMs may 
be derived from phase diagrams as a stoichiometric relation without a specific molecule 
being present. In silica, the Si atom is chemically bound to four oxygens, even though it is 
represented stoichiometrically as SiO2. Furthermore, the dissolved species may not have 
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a discrete molecular structure, but may rather be ions with different oxidation states or 
may be complexed with other solutes, or form small clusters. Selecting appropriate 
descriptors to account for the complexity of surfaces, dissolved species and type of 
bonding within solids is challenging. For these reasons, the modeller may decide to 
select some descriptors from material modelling and others from known datasets. 

6.2.1 Statistical Assumptions Testing Techniques 
 
Statistical techniques always employ underlying assumptions, which make sure that the 
results obtained and the conclusions reached are valid. For example, in Principal 
Component Analysis (PCA, see Section 6.3.1), the analysis is based on a matrix of 
Pearson correlation coefficients and has 5 underlying assumptions: interval-level 
measurement, random sampling, linearity, normal distribution and bivariate normal 
distribution [76]. For a PCA to be valid, all assumptions have to be met, although for 
larger datasets the Pearson coefficient is more robust when the bivariate normal 
distribution is violated. Similarly, when looking for underlying correlations between the 
NM descriptors and the dependent variable (e.g., representing a specific toxicological 
endpoint), it should also be considered that both the independent and dependent 
variables should follow the chosen tests assumptions. At the same time, a sufficient 
sample number (usually test specific) is required for a parametric test to be valid or 
sufficiently robust from divergence from specific assumptions (e.g., t-test). For these 
reasons, prior to the use of any statistical technique one has to ensure an appropriate 
sample size and check for underlying statistical assumptions such that the chosen 
statistical analysis will provide reliable results [76]. 
 
For smaller, non-linear or normal datasets the use of non-parametric statistical models 
such as categorical PCA, Kruskal-Wallis H test or Mood’s Median test is suggested as they 
are more robust and will provide more reliable results. This is especially true in cases 
when small datasets are studied (< 50 data points), as those sets are more sensitive to 
the required assumptions. Those checks provide either statistical (e.g., Shapiro-Wilks, 
Kolmogorov-Smirnov) or visual results (Q-Q plots). Short descriptions for three of the 
most commonly used techniques is included below. However, it should be noted that NM 
datasets often suffer from being rather small such that care must always be taken when 
choosing statistical models, making sure that they are appropriate for small datasets. 
 
The techniques discussed below (i.e., the Durbin-Watson test, the Shapiro-Wilks (SW) 
test and the Q-Q plots) are specifically designed to test the normality and linearity of 
data sets. It should be noted, however, that there are cases in which the dependent 
variable (y - vector) and/ or the descriptors are not normally distributed. It also should 
be noted that the sample size is of larger importance when assessing statistical 
assumptions over the correlations of descriptors. Thus, non-parametric statistical 
analysis methods can be helpful when the data are not normally distributed and the 
sample size is small. In some cases, hypothesis tests such as a simple t-test may still 
work better with non-normal data distribution, particularly if the sample number is 
sufficiently high (i.e., >> 15). In case of non-normality, non-parametric tests such as 
Kruskal Wallis H test, which is powerful but not very robust with respect to outliers, or 
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Mood's Median test, which is not as reliable as the Kruskal Wallis H test but robust with 
respect to outliers, will provide a better test of performance robustness. 
 

6.2.2 Durbin-Watson Test for Data Linearity 
 
The Durbin-Watson (DW) test is used to test the hypothesis that the residuals from a 
linear regression are uncorrelated. The DW test assumes that the data follow a linear 
model and tests that the residuals from a least square regression are not correlated 
against the hypothesis that they follow a first order correlation [77, 78]. The DW test 
provides a statistic with values ranging from 0 to 4, with 0 and 4 indicating a positive (0) 
and a negative correlation (4), respectively, and 2 suggesting no correlation [79]. Care 
should be taken when using the DW test, as it can produce false positive results based on 
specific data characteristics and it requires a large sample number [80]. 

6.2.3 Shapiro-Wilks Test for Data Normality 
 
The Shapiro-Wilks (SW) test is a statistical method developed by Samuel Sanford 
Shapiro and Martin Wilk to test whether a dataset follows a normal distribution and can 
be used to validate underlying normality assumptions, required in other statistical 
models. SW is the most powerful of the more frequently used normality tests [81] and 
has also the advantage that it can be used for small sample sizes and extreme values, 
where other frequently used tests such as Anderson-Darling or Kolmogorov-Smirnoff 
become unreliable [82, 83]. The SW test will test the null hypothesis that a sample 
originates from a normally distributed dataset [84]. If the p-value is greater than the 
desired level of significance (usually 0.05) then the data in question follow a normal 
distribution, although the exact accepted level of significance may vary. There is no 
absolute level of significance, as this ultimately is a decision based on various factors, 
depending on the type of analysis and/or intended use of the data. 

6.2.4 Normal Quantile-Quantile Plots (Q-Q plots) 
 
Normal Q-Q plots are a visual technique to assess the normality (or other distribution) 
of a dataset. They can be used in addition to other statistic techniques and are in 
particular useful for quickly estimating data distribution. They graphically compare the 
actual data with the theoretically expected values if they followed a normal distribution 
[83]. The visual estimation of the goodness of fit (with the y = x, 45o line) provides 
information on whether the data are normally distributed (Figure 4a), skewed (Figure 
4b) or sigmoidal (Figure 4c). Outliers may be observed as well (Figure 4b) [85]. 
 



EU US Roadmap Nanoinformatics    

 
 

44 

 
Figure 4: Schematic illustration of Q-Q plots for normality testing with (a) normal, (b) skewed and (c) 
sigmoidal distribution. 

6.3 Unsupervised Techniques for Similarity Analysis, 
Profiling, and Grouping 
 
Unsupervised techniques involve the use of statistical techniques for similarity analysis, 
profiling and grouping of chemicals. Specifically, these methods aim at discovering 
underlying patterns and relations in the dataset when data are not labelled (i.e., when 
there is no prior knowledge on data classification or categorisation) [86]. Short 
descriptions of a few of these techniques are given below. 

6.3.1 Principal Components Analysis (PCA) 
 
PCA is a statistical unsupervised learning technique that transforms a set of 
observations of possibly correlated variables into a set of values of linearly 
uncorrelated variables called Principal Components (PCs) [87]. This technique helps 
explore strong patterns in a chemical related data set. The application of PCA for the 
purpose of grouping of NMs has already been suggested by Lynch et al. [67]. As an 
example, Lynch et al. [67] initially suggested three principal components to be utilised to 
describe each NM, based on intrinsic (i.e., inherent) properties, extrinsic (i.e., system 
dependent) properties related to e.g., NMs interaction with media, formation of 
molecular coronas etc., and the NM composition. In addition, separate parameters 
related to inherent molecular toxicity are being proposed. Each of these PCs has multiple 

https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Correlation_and_dependence
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contributors (observed variables as descriptors) and the relative contribution of these 
will vary for different NMs. A schematic illustration on the use of PCA for determination 
of the primary descriptors for NM toxicity is shown in the following figure (Figure 5), 
taken from Lynch et al. (2014). 

 

Figure 5: A schematic illustration on the use of PCA for determination of the primary descriptors for NM 
toxicity, taken from Lynch et al. (2014). 

6.3.2 Cluster Analysis 
 
Cluster Analysis is another unsupervised learning technique that is very useful to 
explore structures within data sets [88]. In other words, this process consists of 
organising objects (i.e., chemicals) into different groups (i.e., clusters) according to their 
similarities. In algorithms of clustering, the chemicals are organised. Those, which are 
‘similar’ between themselves but ‘not similar’ to the chemicals belonging to other 
chemical clusters, are collected. Alternative clustering algorithms include:  

i) Exclusive clustering; 
ii) Overlapping clustering; 
iii) Hierarchical clustering;  
iv) Probabilistic clustering. 

6.3.2.1 Exclusive Clustering 
In this class of clustering algorithms, the data are grouped in an exclusive way, so that if 
a certain data point belongs to a definite cluster it cannot be included in another cluster. 
An example of exclusive clustering includes k-means clustering that clusters a data point 
into only one cluster. 



EU US Roadmap Nanoinformatics    

 
 

46 

6.3.2.2 Overlapping Clustering 
These algorithms use fuzzy sets to cluster data, so that each object may belong to two or 
more clusters with different degrees of membership. In this case, data will be associated 
to an appropriate membership value.  

6.3.2.3 Hierarchical Clustering  
This algorithm is based on the union between the two nearest clusters. The starting 
condition is realised by setting every data point as a cluster. After several iterations final 
clusters are realised. Based on the distance among objects (i.e., chemicals), hierarchical 
clustering connects these objects to form clusters such that objects closer to each other 
are more correlated. Hierarchical clustering is often based on Euclidean distance 
between the data points. However, other similarity metrics can be used as well [89]. 

6.3.2.4 Probabilistic Clustering 
This cluster analysis relies on a completely probabilistic approach [90]. Approaches 
such as Bayesian regression and expectation maximisation (EM) represent probabilistic 
clustering since algorithms like EM use Gaussian mixture models to assign a posterior 
probability to each data point as belonging to a certain cluster. 

Generally speaking, techniques such as K-means (an exclusive clustering technique) and 
hierarchical clustering are the most commonly used clustering approaches. Clustering 
techniques are useful in initial steps of exploratory data analysis, to provide insights 
about similarities in both toxicological outcomes and descriptors. Moreover, these 
algorithms are powerful tools to assist grouping and categorisation of chemicals. Indeed, 
clustering methods have already been adopted in nanochemoinformatics as an initial 
step in the development of QSAR models to examine if NMs showing similarity in 
descriptors also show a similar biological activity [91-93] and to provide grouping of 
NMs in different toxicity classes and then to use those clusters for toxicity prediction of 
yet untested materials [94]. 

6.3.3 Self Organising Maps 
 
A Kohonen Self Organising Map (SOM) is a special type of Artificial Neural Network 
(ANN) that it is used to reduce dimensionality of data, providing a representation of the 
input space through a lattice (usually one- or two-dimensional). The SOM method 
assigns data points (i.e., chemicals) to prototype vectors of the same size of the total 
number of descriptors, corresponding to a cell of the lattice. These vectors (called 
weight vectors or codes) are iteratively updated in such a way that they “self-organise” 
in a smoothed way: weight vectors of neighbouring nodes in the lattice will thus be 
similar. 
 
SOM clustering analysis provides visual representation of the similarities between 
responses based on non-categorised response data. Analysis by SOMs is useful since it 
projects the data onto a 2D map while preserving the topology of original data (i.e., the 
relative distances among SOM cells are related to the degree of differences in the data 
vector represented in each cell). SOMs have been successfully used in various 
exploratory data analyses [95-97]. 
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Specifically, the general algorithm to train a SOM works as follows: 

1. Randomly initialise weight vectors corresponding to each node of the lattice. 
2. Select at random an observation (i.e., a chemical) from the dataset. 
3. Find the node in the lattice whose prototype vector in the lattice is the most 

similar (in terms of e.g., Euclidean distance) to the observation: this node is 
known as the Best Matching Unit (BMU). 

4. Weight vectors of nodes found within the radius of the neighbourhood of the 
BMU are updated to be similar to the BMU vector. The closer a node is to the 
BMU, the more the weights are altered. The function used to compute the 
radius ensures it diminishes at each iteration, in such a way that it starts 
covering the whole lattice and corresponds to a single node (the BMU) at the 
final step. Ideally, average distance between nodes in the lattice and dataset 
sample(s) represented by that node decrease at each iteration, eventually 
reaching a plateau.  

5. Repeat starting from step 2 for N iterations or until no significant change in the 
weight vectors is observed. 

  
Once the SOM have been trained, it is possible to investigate the distribution of each 
descriptor across the SOM by means of heat maps. Comparison of these heat maps 
provides insights about relationships between descriptors. Another useful visualisation 
is the so-called U-Matrix, which shows the distance between each node and its 
neighbours: large distances indicate dissimilarity among the nodes, and thus can be 
viewed as boundaries between clusters of nodes. Indeed, after training, SOM cluster 
analysis algorithms (described in section 6.3.2) are often applied to the nodes of the 
lattice, which accordingly categorise the original dataset. Ideally, the clusters derived in 
such a way are contiguous when drawn with different colours on the lattice. 
Contiguousness can be ensured by imposing that the nodes be both similar in weight 
vectors and close to each other. However, care should be taken during reporting, as the 
original topology of the map is what is most important during analysis of vector 
similarity. Alternatively, it is possible to guarantee classes to be contiguous by using 
Supervised SOMs [98], where each node is associated, in addition to its weight vector, to 
a vector representing specific properties of interest. In this way the SOM learns at the 
same time relations in the descriptors (X space) and in the desired outcome (Y space), 
plus the correlation between the two spaces. 
 
SOMs analysis followed by clustering analysis have been adopted as a tool to analyse 
toxicity-related cell signalling pathways for metal and metal oxide NMs at different 
exposure times [99]. Supervised SOMs, on the other hand, have been used to explore 
experimental and simulated crystal structures via powder diffraction patterns, 
highlighting structure-property relations and demonstrating that the results become 
easier interpretable [100]. 
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6.4 Supervised Techniques for Filling Data Gaps 
 
There are three types of data filling approaches: (Quantitative) Structure-Activity 
Relationship methods, trend analysis and read-across (Table 3). They are based on 
different assumptions and require different minimal number of data points (here: NMs 
in a group for which the endpoint value y has been measured). 
 
Table 3: Nanochemoinformatic methods of data filling. 
 

Method Assumption Description Minimal 
number of 
data points 

(Q)SAR Mathematical 
model:  
y = f(X) 

Mathematical model that was not developed as part of the 
category formation process. The validity of the (Q)SARs 
should be assessed according to 5 OECD (Q)SAR 
validation principles. 

> 15 

Trend 
analysis 

Trend in y When some NMs in a category have measured values of 
the endpoint (y) and a consistent trend is observed, 
missing values can be estimated by simple scaling from 
the measured values to fill in the data gaps. 

> 3 

Read-
across 

Similarity in X Endpoint value (y) for "source chemical” is used to 
predict the same endpoint for "target chemical”. 

1-6 

 

6.4.1 Quantitative Structure Activity Relationships (QSAR) 
 
The basic principles for (Quantitative) Structure-Activity Relationships ([Q]SAR) 
approaches were formulated for the first time in 1962 by Hansch and Fujita, and have 
then been implemented for designing new chemicals, mainly for agrochemical and drug 
design [101]. The original approach was primarily interested in uncovering the 
molecular aspects of drug and agrochemical action, while prediction of the activities of 
new molecules was secondary. It sought mathematical relationships between the 
changes in molecular structure, encoded by so-called ‘molecular descriptors’ (e.g., 
number of particular functional groups, indexes that express topology and branching of 
a molecule), and the change in biological activity for a set of compounds. Thus, if one 
calculates molecular descriptors for a group of similar chemicals and measures a specific 
activity (i.e., a specific toxicological endpoint) for a part of this group, one can easily 
predict the lacking data from the molecular descriptors by using a suitable mathematical 
model (i.e., QSAR model). Depending on the modelled endpoint (nominal or numerical), 
the modelling is classified as qualitative or quantitative and abbreviated as SAR or QSAR, 
respectively [102]. More recently, the field of QSAR has split into two camps, those that 
favour the original molecular mechanistic approaches of Hansch and Fujita, and a larger 
group for whom prediction of the properties of new molecules based on the activity of a 
diverse set of training data is the main objective. A recent paper has summarised the 
advantages and difference of the two approaches [103]. 
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Later, when the need to assess potential health risks posed by new chemicals arose, 
(Q)SAR methods found many applications for hazard assessment. Examples of SAR and 
QSAR models developed for predicting various toxicity and ecotoxicity endpoints can be 
found in the literature [104-107]. (Q)SAR can reduce animal testing according to the 3R 
principles (Replacement, Reduction, Refinement of animal testing) [108]. An 
international co-operation among OECD member countries on (Q)SARs started in 1990. 
The OECD principles for validation of (Q)SAR models were released in 2004, and a 
guidance document was published in 2007. (Q)SAR techniques have also been 
recommended as valuable alternatives in Article 13 of the EU REACH regulation [109]. 
 
In 2009 [110] the groups of Jerzy Leszczynski and Tomasz Puzyn jointly proposed to 
apply the QSAR methodology for predicting toxicity of NMs (Nano-QSAR). A proof-of-
concept (i.e., a first Nano-QSAR) developed for toxicity of 17 metal oxides NMs to E. coli 
bacteria was published two years later [111]. At the same time, André Nel and 
collaborators proposed to employ QSAR-like methods for NM High Throughput 
Screening Data to assess NM safety [112]. In parallel, the groups of Yoram Cohen and 
Robert Rallo published the first classification Nano-SAR model [113] and proposed 
using self-organising map analysis for assessing toxicity-related cell signalling pathways 
[99] and advanced an approached for identifying association rules for cell responses 
induced by exposure to NMs [114, 115]. The above studies were performed for metals, 
metal oxides and surface modified variants of such NMs [116]. In addition, Cohen and 
his group presented more recent work on QSARs for gold NMs that considered the role 
of the protein corona [117] and QSARs developed for quantum dots [14]. Methodology 
of Nano-(Q)SAR was further developed during next years, which included new 
descriptors, methods and models [75, 118-132]. 
 
It is widely accepted that Nano-QSAR models can significantly support current efforts 
with respect to NM grouping and can be used for data gap filling within the established 
groups. There is a number of recently proposed grouping schemes for NMs, for example 
the ones worked out by the ECETOC Nano Force Group (DF4NANO) [133], by the Dutch 
National Institute for Public Health and the Environment (RIVM) [134] and by EU FP7 
MARINA research project [135]. 
 
QSARs developed for classic chemicals help identify the direct influence of the structure 
on the modelled property. As such, the model indicates, which structural features are 
mainly responsible for the observed property or toxicity. In the case of NMs, it might be 
impossible to go directly from the structure to toxicity, since an additional level of 
information (i.e., extrinsic properties) should be considered. In this context, “global” 
Nano-QSAR models can be applied for justifying or establishing particular grouping 
criteria. This means, the properties of higher levels (i.e., stability) might be expressed as 
a combination of properties from lower lever (i.e., chemical identity) plus the influence 
of the system (external conditions, e.g., pH). Thus, human toxicity and ecotoxicity can be 
expressed as a combination of intrinsic and extrinsic properties of NMs. In such a way, 
the hypotheses formulated a priori for particular grouping criteria can be verified. 
 
When grouping criteria for engineered NMs are finally established, the efforts of the 
modellers should be put on developing so-called “local” Nano-QSAR models, i.e., models 
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capable predicting properties of NMs within the identified groups (categories). In effect, 
existing data gaps can then be filled. However, only the results from appropriately 
validated models should be accepted. Well-known universal OECD principles on the 
validation of QSARs [136] provide the conditions that must be fulfilled to accept the 
model (and the predicted results) to be used for the regulatory purpose. 
 
These are: 

1. Clearly defined endpoint; 
2. Unambiguous algorithm; 
3. Defined applicability domain; 
4. Appropriate measures of goodness-of-fit, robustness and predictive ability; 
5. Mechanistic interpretation, if possible. 

 
It should be noted that the above condition no. 4. implies that the model must be 
externally validated. This means the validation should be performed using data on NMs, 
which have not been previously used for developing that model. Detailed interpretation 
of the five OECD principles for newly developed Nano-QSARs was widely discussed 
between the modellers and a summary was presented in Puzyn et al. [137]. It is also 
noted that in a series of papers by Cohen et al. [114, 117, 138] a workflow for the 
development and validation of QSARs was presented and demonstrated focusing on the 
cellular toxicity of NMs. In these studies, issues that pertain to descriptor identification 
and selection, data processing (and cleaning), model training and validation (including 
robustness), and determination of model applicability domain are addressed. 
 
Firstly, existing Nano-QSAR models are limited to rather simple cases, where usually one 
in vitro toxicity endpoint was strongly related to one or two simple structural properties 
of the materials that did not depend on the external conditions (i.e., intrinsic properties). 
In further perspective, additional work is needed to obtain fully functional models. Such 
models must include information on the structure, which is dynamically changing in 
dependence on the external conditions. This may require including additional 
“dimensionality” in the set of descriptors. Moreover, pure probabilistic approaches in 
QSAR may be supported by deterministic components, i.e., QSAR equations may be 
augmented by equations derived based on physical principles. 
 
Secondly, the majority of the existing Nano-QSAR models was developed for NMs built 
from only one type of molecules (e.g., uncoated metal oxides NMs) [75, 111, 125, 131] or 
from two types, but with one remaining unchanged in the set (e.g., NMs having the same 
core but differing surface coatings) [139, 140]. Therefore, there is a need to develop new 
structural descriptors for chemical materials varying by more than one chemical species 
at the same time. 
 
Thirdly, the development of QSARs requires experimental data measured for a sufficient 
number of NMs varying by the structure and being representative for the whole general 
population of materials of a given type (e.g., 50 ZnO NM variants differing in size, coating 
etc., representative for the whole space of possible ZnO NM variants) [141]. Moreover, 
data for all of them should be obtained by using the same experimental protocol. As it 
was concluded in various EU projects (Figure 6), when analysing literature, there are 
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very rare cases, where such relatively large single data sets are available. Therefore, the 
possibility and also limitations of merging the endpoints at higher ontological levels 
(data fusion) needs to be explored. For instance, could the endpoints: “percent apoptotic 
cells” (BAO_0002006) and “percent dead cells” (BAO_0002046) be merged into a single 
endpoint “percent cytotoxicity” (BAO_0000006)? Data fusion should be possible at least 
in a qualitative manner (translation of the numerical values into a nominal scale, e.g., 
cytotoxicity “yes” or “no”). In effect, the size of available data sets would then be 
extended. However, both (i) the development of detailed ontology and (ii) the studies of 
the influence of data fusion on the predictive ability are required. 

Figure 6: The number of 363 literature references (2014) presenting experimental toxicity data vs. the 
number of NMs (NMs) studied in these references [142]. 
 
Finally, as described in section 6.3 of this roadmap, nanobioinformatics offers a variety 
of tools to better understand Modes of Action (MoA), and to support the establishment 
of Adverse Outcome Pathways (AOPs) of NMs. On the other hand, Nano-QSAR can serve 
as a predictive tool for various endpoints. Thus, further work on the integration of both 
methodologies would result in increasing efficiency of both. In general, a Nano-QSAR 
model should be well explained from a mechanistic point of view. In the hybrid 
methodology (Nano-QSAR combined with systems biology) the QSAR component may 
serve for predicting the molecular initiating event (MIE). Moreover, omics data may be 
considered as novel descriptors for QSAR studies. 
 
Fourches et al. (2010) [91] demonstrated the use of QNAR modelling in predicting 
biological activity and cellular uptake of metal NMs. In a first case, a structural 
characterisation of the NMs was used to define the molecular descriptors. The used 
molecular descriptors included structural descriptors such as type of metal core and 
experimental descriptors such as size, R1 and R2 relaxivities that represent magnetic 
properties, and zeta potential that reflect the magnitude of electric charge on the NM 
surface. In a second case study modelling cellular uptake, 150 chemical descriptors of 
the surface-modifying organic molecules were calculated and were used as molecular 
descriptors in building models for cellular uptake of NMs with the same core structure. 
This proof-of-concept study illustrated the feasibility of QNAR modelling, but also 
demonstrated that small variations in NM properties can drastically influence the 
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biological activity and that modelling these effects remains challenging and will require 
high quality and large experimental datasets that will allow sufficiently robust modelling 
approaches [91]. 

6.4.2 Trend analysis 
 
Trend analysis is a method for predicting toxicity of a chemical by analysing trends in 
toxicity (increase, decrease, or constant) of several chemically similar tested chemicals. 
Trend analysis was first proposed by Brown for detecting non-random process trends 
[143]. He computed a “tracking signal” which is defined as the sum of the forecasting 
errors divided by the Mean Absolute Deviation. This approach was further improved by 
Trigg et al. [144] and Cembrowskl et al. [145]. Trend analysis was first applied for filling 
data gaps for “quantitative endpoints” of chemical toxicology studies in March 2008 with 
the release of the OECD (Q)SAR Toolbox. According to the toolbox, methods based on 
trend analysis are applicable for filling data gaps within groups (i.e., established 
categories) of chemicals, when a clear systematic trend with respect to the endpoint 
values is observed. 
 
Trend analysis techniques for NMs have not yet been extensively used. However, they 
may serve for estimating size-dependent properties, as demonstrated by Gajewicz et al. 
[75]. NM physico-chemical properties may change either linearly within the entire range 
of sizes (Figure 7a) or change up to reaching so-called “saturation point” and then 
remain unchanged with further increasing size (Figure 7b). In both cases the property of 
interest can be interpolated, which is preferred in a regulatory context or, what is more 
challenging, extrapolated from the existing trend. From Puzyn et al. [111] research, we 
conclude that the cytotoxicity was exponentially increased with the increasing of 
Enthalpy of formation of a gaseous cation (ΔHme+) of metal oxide NMs (Figure 8). 
Besides, Mu et al. [146] found that the Escherichia coli cytotoxicity exponentially 
increased with the polarisation force parameters (Z/r) of metal oxide NMs (Figure 8). 
 

 

 
 

Figure 7: Two types of trends in physico-chemical properties observed for NMs when particle size is 
increasing [147] 

http://www.baidu.com/link?url=ppeBoYn0ThPbv3LtwsO0TK952jPtTwreDUtMaIG2C7BkPQtBx9YFUIcCl9jyDpXmiJH9AFIu9pbXjkpo7vvn6GUgQF9b8zuWNe_FmfWV7-i
http://www.baidu.com/link?url=ppeBoYn0ThPbv3LtwsO0TK952jPtTwreDUtMaIG2C7BkPQtBx9YFUIcCl9jyDpXmiJH9AFIu9pbXjkpo7vvn6GUgQF9b8zuWNe_FmfWV7-i
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Figure 8: Two types of trends in cytotoxicity observed in E.coli for metal oxide NMs when the enthalpy of 
formation of the gaseous cation (ΔHme+) and the polaristion force  (Z/r) is increasing respectively. 
 
In a further perspective, it would be very practical to group the properties of NMs 
according to the presented types of trends. Moreover, trend analysis might be tested to 
predict not only size-dependent, but also other (system-dependent) properties, when 
the monotonically changing conditions causes monotonic changes in the properties of 
NMs. 

6.4.3 Read-across 
 
When there is no visible trend within the defined group and/or the number of data 
points is too small for developing regular Nano-QSAR, either qualitative or quantitative 
read-across techniques might be applied. Read-across is based on similarities between 
NMs. Endpoint values for one or several "source chemical(s)” are used to predict the 
same endpoint for one or several sufficiently similar "target chemical(s)” (Figure 9).  

 

 
Figure 9: Schemes and currently available algorithms of read-across [148]. 
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Read-across can be performed in one of the four schemes: one-to-one, one-to-many, 
many-to-one and many-to-many. In the first two cases, using the endpoint value for the 
source NM as the estimated value of the target NM(s) is the only possible “algorithm” for 
read-across. However, when read-across is based on several source NMs, one can apply 
several algorithms for read-across; i.e., averaging, taking the most conservative value, 
etc. 
 
Based on the assumption that similar chemicals with similar structural and/or 
functional similarities have similar physico-chemical, toxicological, and ecotoxicological 
properties, read-across can be applied to predict unknown values for specific endpoints 
(related to e.g., toxicity) for the ‘target chemical(s)’ with the known endpoint values for 
‘source chemical(s)’ [149]. To identify similarities, the following two steps can be 
performed. Firstly, chemicals were represented as feature vectors of chemical 
properties either by binary or holographic fingerprints. Secondly, the similarity of 
chemicals can be quantified by various distance measures, i.e., Hamming, Euclidean, 
Cosine, Mahalanobis, Tanimoto distance, or linear or nonlinear relationships of the 
features.  
 
In some cases, the read-across approaches provide only the qualitative information and 
may be used to demonstrate the presence or absence of a property/activity under 
consideration. In contrast, various different approaches can be applied for quantitative 
prediction of the endpoint of interest, which are made by applying selected 
approximation type. For the similar source compounds in the established group, one can 
use average, most conservative, mode, and median value. When the compounds’ 
property related to the structural differences within the category follows a linear trend 
or regular pattern, interpolation or extrapolation from the empirical data for a given 
endpoint can be performed instead to fill in the data gaps. 
 
Puzyn et al. established a quantitative read-across approach for NMs (Nano-QRA) based 
on one-point-slope, two-point formula, or the equation of a plane passing through three 
points. The predictive capacity of Nano-QRA approach is better than other read-across 
methods with different types of approximation in terms of both predictive power and 
reliability of predictions [149]. Recently, more sophisticated algorithms of qualitative 
and quantitative read-across were proposed by Gajewicz et al. [150] The proposed 
quantitative read-across approach based on a distance-weighted, k-nearest neighbour 
algorithm (QRAk-NN) for toxicity assessment of metal oxide NMs, which displayed 
predominant prediction accuracy in both training and external validation [150]. These 
studies provide opportunities to broaden the application of read-across method for 
filling empirical data gaps when adequate nanotoxicity data is not available. 
 
In a regulatory context, read-across can be applied within the analogue or category 
approach. According to the Read-Across Assessment Framework (RAAF) of ECHA [151] 
"The term ‘analogue approach’ is used when read-across is employed between a small 
number of structurally similar substances; there is no trend or regular pattern on the 
properties. As a result of the structural similarity, a given toxicological property of one 
substance (the source) is used to predict the same property for another substance (the 
target) to fulfil a REACH information requirement." Accordingly, "the term ‘category 
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approach’ is used when read-across is employed between several substances that have 
structural similarity. These substances are grouped together on the basis of defined 
structural similarity and differences between the substances. As a result of the 
structural similarity, the toxicological properties will either all be similar or follow a 
regular pattern. Predictions should cover all parameters as required in the respective 
REACH information requirements. It may be possible to make predictions within the 
group for the target substance(s) on the basis of a demonstrable regular pattern. 
Alternatively, whenever there is more than one source substance in the category and no 
regular pattern is demonstrated for the property under consideration, the prediction 
may be based on a read-across from a category member with relevant information in a 
conservative manner (worst case). The basis for the prediction must be explicit." [151]. 
 
Although read-across possesses several advantages, i.e., easy to interpret and 
implement, applicable in modelling qualitative and quantitative toxicity endpoints, and 
flexible descriptors and similarity measures for expressing similarity between 
chemicals, the techniques of read-across have not been sufficiently standardised yet. In 
effect, the results of estimations using read-across can be ‘expert-dependent’, i.e., may 
vary depending on the personal experience of experts conducting the study. This is 
important from the regulatory perspective, because it does not guarantee reliability and 
reproducibility of the results. Moreover, statistical similarity measures cannot provide 
the information on toxicity mechanisms. Therefore, within some regulatory frameworks 
(e.g., REACH), bridging studies must be conducted to remove areas of uncertainty and 
validate the claimed similarities between the source and target chemicals. For example, 
as a bare minimum, physico-chemical measures must be known for both the source and 
the target, and the (eco)toxicological bridging studies will then be chosen based on the 
strategy and the endpoint needing to be fulfilled. In addition, complex similarity 
measures need complicated model interpretation. Furthermore, in the case of 
inadequate analogue chemicals or conflicting toxicity profiles of analogues, the read-
across is inapplicable or inaccurate. Therefore, the development of novel read-across 
algorithms that can provide reliable predictions of the unknown data without further 
experimentation is very important. 
 
Further developments in this area should include design of novel and suitable numerical 
algorithms for read-across that will be useful in the context of filling data gaps. The 
feasibility and predictive ability of newly developed read-across algorithms should be 
verified and validated. Therefore, it would be very practical to establish the principles 
for the validation of read-across approaches by means of suitable case-studies (i.e., using 
external data obtained from regulatory (eco)toxicity tests). Furthermore, the 
recommendations on existing read-across approaches, which are the most relevant for 
filling data gaps for NMs, should be delivered. In a further perspective, the acceptable 
and sufficiently standardised algorithm(s) should be implemented into the user-friendly 
software (e.g., OECD QSAR Toolbox). 
 
It is worth mentioning that the proposed algorithms of read-across are universal that 
means enable to fill the data gaps within categories defined by using of any criteria and 
grouping (categorisation) system to be applied.  
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7. Modelling properties, interactions and fate of NMs 
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7.1 Introduction to Materials Modelling 
 
Simulations involving hundreds of thousands of atoms on a microsecond time scale are 
now routine, where state-of-the-art simulations involve one or two order larger size- 
and time scales [152]. Molecular simulations are examples of utilising theoretical 
descriptors in computational modelling. They have become an indispensable instrument 
in studying materials and are nowadays routinely used, e.g., in drug design for in silico 
screening of candidate compounds. They are also increasingly used in nanotechnology 
and nanomedicine. Among areas of active interest is the bionano interface, which is 
driven by applications in medicine, food, and cosmetics [153-155], as well as predicting 
toxicity. Although molecular simulations cannot account for biological events leading to 
toxicity, they can provide a framework for systematic evaluation of NM interactions with 
biomolecules. Understanding these interactions and the bionano interface’s spatial 
structure is crucial for achieving a better control over surface activity and for supporting 
safety regulations. 
 
Generally, physics- and chemistry-based materials modelling can provide information 
about NM properties (intrinsic and extrinsic) that are difficult (or impossible) to 
measure, offering a time and cost-effective alternative to experimental measurements 
while also expanding the range of materials considered in developing targeted 
performance, e.g., safe-by-design. For these reasons, materials modelling is receiving a 
growing interest by many different sectors, including industrial ones. For example, the 
European Commission is strongly supporting the Digital Single Market (DSM) [156] 
which relies also on virtual tools for developing new products. This includes assessing 
(nano-) safety. The European Materials Modelling Council (EMMC) is supporting this 
trend by promoting systematic classifications of materials models [60], pre-
standardisation [61] and ontologies for interoperability of different models [62]. The 
EMMC has also issued a roadmap including topics of nanosafety [157]. 

7.2 Use of computational models to compute NM properties 
 
Applying materials modelling to the nanoEHS domain is relatively recent. Most 
published studies focus on prediction of molecular loading, molecular release, NM 
adherence, NM size, and polydispersity [158].  
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Several studies show very reasonable predictions. However, most of these models focus 
on specific types of NM only and rely on very limited datasets, making the generalisation 
of the models very challenging, given the complexity of the NM world. 
 
Section 6.2 describes the distinction between statistical modelling and material 
modelling. In both, a computational nanoEHS model is a set of equations based on 
parameters (i.e., descriptors), whose selection and magnitude are somehow connected 
to chemical composition. In both, after descriptors have been selected and values were 
set, the computational nanoEHS model can be solved (e.g., QSAR, QSPR, trend analysis 
etc.) and then be compared to either measured properties or biological outcomes. Model 
acceptance in a regulatory context requires validation (as discussed in Sections 6.4.1 
and 12.4). 
 
In chemoinformatics, the descriptors are correlated to molecular structure and their 
values are usually obtained from experimental measurements. There is a heavy reliance 
on statistical approaches, such as in unsupervised techniques (Section 6.3), and as noted 
in Section 6.2, chemoinformatics experience is heavily weighted to discrete molecular 
entities in solution, where a structure involves covalent bonding and functional groups. 
However, the modeller may also decide to use different types of descriptors, some being 
based on experimental measurements while others derive from materials modelling or 
theoretical concepts. 
 
In materials modelling [60], an individual descriptor value is generated using a generic 
and widely applicable physical equation that is combined with a case-specific material 
relation. Due to the frequently encountered complexity of physical equations, calculating 
model results may involve ‘solver’ programs (numerical methods) or require ‘post 
processing’ to generate a property estimate. Model classes and experience span several 
size ranges and include electronic, atomistic, mesoscopic and continuum categories. This 
broad range of model types allows for descriptors that incorporate a variety of chemical 
processes (adsorption, catalysis) and entities (electrons, ions, atoms, covalently bonded 
molecular structures).  
 
In summary, a property and its estimated value from materials modelling may become a 
descriptor in the computational nanoEHS model in addition to experimentally measured 
descriptors. For this reason, Section 7 puts emphasis on examining individual nanoEHS 
descriptors that may be estimated from a suite of physical equations regulated by 
material relations. 

7.2.1 Intrinsic properties and descriptors 
 
In regards to the chemical composition and intrinsic properties of NMs, several software 
programs (e.g., Adriana.Code, Dragon, MolCom-Z and PaDEL-Descriptor) are available 
and can be used to calculate relevant theoretical descriptors (refer to Section 6.2 for 
distinction between theoretical and experimentally measured descriptors). Some 
descriptors can be extracted directly from results of quantum-mechanical calculations. 
Such calculations can be very computational intense and time consuming. By selecting 
the appropriate level of theory for geometry optimisation, time and cost of calculations 
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can be reduced, but at the cost of the predictive ability. Using simplified, semi-empirical 
methods (Recife Model 1, Parametrisation Model 6, etc.), it is possible to calculate the 
molecular parameters for molecules in a short time [110]. However, for structures that 
are largely different from the structures used for parametrisation, the results will not 
suffice and may lead to incorrect description of the structure. Thus, for “untypical” 
molecules, it is better to use ab initio or Density Functional Theory methods, which 
require more computational resources. This situation also applies for NMs, because they 
are no longer simple molecular compounds such that the implementation of higher 
levels of theory in the ab initio formalism is recommended [110]. Fortunately, literature 
indicates that the most significant size-dependent changes of some physico-chemical 
properties of spherical NMs are observed below 5 nm, whereas the changes for sizes 
between 15 and 90 nm typically can be neglected. In addition, Gajewicz et al. [136] 
showed that for metal oxide clusters several molecular descriptors change with the size 
of the clusters. The physico-chemical properties either change (i) linearly with size or 
(ii) up to a “saturation point” (an asymptote), at which point the properties reach 
constant values that are characteristic for the bulk material. However, this implies that it 
might be possible to estimate the properties of a given NM by performing calculations 
for a series of much smaller molecular clusters and then fitting them using an 
appropriate function [147]. 

Theoretical descriptors involve quantum chemical or molecular simulation methods to 
derive molecular properties. In addition, NMs may have their own special properties, 
e.g., for metal oxide NMs the crystal structure is important [73]. Different types of 
theoretical descriptors are discerned: (i) constitutional properties such as periodic 
table-based descriptors such as molecular weight, cation charge, metal electronegativity, 
etc., which are easy to obtain [120] and (ii) electronic properties (regarding metal oxide 
NMs) such as band gap and valence gap energy, ΔHMe+ or the molar heat capacity. From 
a quantum chemistry viewpoint, NMs are large systems, which complicates the 
necessary calculations at the proper level of theory. Thus, other approaches are needed 
to determine the proper structural descriptors for nano-QSARs [110]. These quantum-
chemical properties can be calculated using several software programs. For example, 
Puzyn et al. established a model to describe the cytotoxicity of metal oxide NM to E. coli 
calculating 12 descriptors at the semi-empirical level using the PM6 method 
implemented in the MOPAC software [111]. The enthalpy of formation of gaseous cation 
with the same oxidation state as the metal-oxide structure, ΔHMe+, was shown to be an 
efficient descriptor of the chemical stability of metal oxide NMs with regard to their 
cytotoxicity. Other descriptors that have been calculated for metal oxide NMs include 
molar heat capacity, average of the alpha and beta lowest unoccupied molecular orbital 
(LUMO) energies [159] and the atomisation energy, atomic mass, conduction band 
energy, ionisation energy and electronegativity [115]. However, it should be noted that 
the calculation of these descriptors is computationally demanding. 

Other approaches to derive structural descriptors have been described in the literature. 

(i) Glotzer and Solomon proposed a system of eight orthogonal “dimensions” 
(surface coverage, aspect ratio, faceting, pattern quantisation, branching, 
chemical ordering, shape gradient and roughness) to measure the structural 
similarities between various nanostructures. How to quantify these eight 
dimensions still needs to be solved [160]. 
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(ii) The chemical composition can also be expressed by simple constitutional 
descriptors (e.g., atomic numbers) or by a single descriptor based on correlation 
weights derived from molecular graph or atomic orbitals theory [161]. Based on 
these theories, another approach that has been implemented in nano-QSAR 
model development makes use of the CORAL software [162]. Based on SMILES, 
optimal descriptors can be defined and correlated with endpoints such as 
cytotoxicity of metal oxide NMs [118] or binding affinity of fullerene derivatives 
to HIV-1 protease [163]. However, for general implementation of nano-QSAR 
models this method of representation of the structure is not feasible because of 
the complexity of the molecular architecture. Therefore, in a next evolution, the 
chemical information was integrated with additional heterogeneous (eclectic) 
data, such as size, concentration, irradiation, porosity, etc. [164]. Building on the 
SMILES notation, additional SMILES-like sequences of symbols that codify the 
physico-chemical and biochemical conditions of chemicals and NMs in biological 
systems have been introduced and termed a quasi-SMILES notation. These can 
then be used to calculate optimal descriptors and applied in nano-QSAR 
modelling [164, 165]. 

(iii) Simplex representation of molecular structure (SiRMS) are a 2D level generated 
two, tri-, and tetra-atomic molecular fragments for which descriptors can be 
derived [131]. 

(iv) The Liquid Drop Model (LDM) is a novel approach to represent the 
supramolecular structure of NMs [125]. The main idea behind this approach is to 
use a combination of simple descriptors, which reflect the structure of a NM for 
the different levels of organisation: from a single metal oxide molecule (i.e., 
chemical structure) to a supramolecular ensemble of molecules (i.e., NM size). 
LDM has for example been described to determine the surface energy of NMs 
[166]. Using the LDM extensive quantum-mechanical calculations can be avoided. 

(v) QSAR-perturbation approach in which a moving average approach was applied to 
the data in order to generate new descriptors that reflect their relative 
importance in the model [167]. 

7.2.2 Extrinsic properties and descriptors 
 
The environmental fate and biological activity of a NM can be influenced by the 
surrounding medium, which can affect, for instance, its surface charge, surface 
reactivity, and surface composition (coating) and even lead to changes in the particle’s 
core composition. Therefore, a set of extrinsic property descriptors should complement 
the standard assumptions. Typical examples used for NMs include: 

● hydration energy, heats of immersion, contact angle for water 
● surface charge density at different pH values and salt concentrations 
● dissolution rate and thermodynamic solubility 
● binding energies for essential biomolecules or adsorbates functional groups 

 
Atomistic simulation models, both classical and ab initio, and mean-field theories 
(Poisson-Boltzmann theory) can be used to derive these properties for NMs at realistic 
conditions. Hydration energy (per unit area) or heat of immersion or contact angle can 
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be used to characterise the degree of hydrophobicity of the material. For example, 
atomistic molecular dynamics simulations can evaluate the adsorption energies of water 
molecules at the NM surface. Hydration free energies of the dissolved material 
molecules can be computed to predict the NM dissolution rates, using methodology 
developed for prediction of free energy of solvation [168]. The charge and hydration 
energies of NMs should generally be calculated at relevant temperatures (i.e., room or 
body temperature, respectively), at relevant salt concentrations in addition to water 
composition (physiological concentrations between 100 mmol/L to 150 mmol/L) and 
pH values (from 3 to 7), reflecting the conditions in the lab and as well the different 
compartments of living organisms. For calculation of surface charge at different pH and 
salt concentrations, one can use the methods based on Poisson-Boltzmann mean field 
equation that includes charge regulation [169, 170]. 

7.3 Use of material models for supporting risk assessment 
 
Modelling in nanotoxicology is often used in the context of predicting risks due to NM 
exposure. Generally speaking, for obtaining information about risks one has to combine 
information about the exposure to a given NM and knowledge about its possible hazards 
(typically as dose-response relationships) to get insights if a specific exposure is likely to 
cause any adverse effects. Some risk models, however, also determine the probability 
that a specific adverse effect will occur. Hence modelling in the context of risk 
assessment should include exposure models in addition to hazard models. A brief 
description of a conceptual approach to risk assessment for NMs was provided by Cohen 
et al. [171] and various frameworks that integrate toxicity and exposure information 
were recently reviewed by Romero et al. [172]. Exposure models are intended to predict 
how NM evolve in the environment [171], which includes agglomeration/aggregation 
[173] behaviour. However, exposure does not only mean exposure of workers, 
consumers, the general public or the environment. Information about NM exposure is 
also relevant in the context of whole animal tests (i.e., exposure of the animals), for cell 
based toxicity tests (i.e., exposure at the cellular level), or even at the molecular level 
(e.g., to get insights in specific interactions between NMs and a given molecule)[174]. 

7.4 Challenge: Descriptors and Multiscale Modelling of the 
Bio-Nano Interface 
 
The Bio-Nano interface can be important for initiation of an Adverse Outcome Pathway 
(AOP) and for systemic distribution of NMs (also refer to chapter 8.3). Thus, NM 
characteristics that directly determine the interactions between NMs and various 
biomolecules are most informative. Although they may not be completely independent 
from the basic properties of the NM (as expressed by their intrinsic descriptors), a 
systematic evaluation of the descriptors for interactions may make predictive models 
much more compact and robust. Examples of such descriptors are: content of NM 
protein corona composition, adsorption enthalpy for an amino acid, lipid molecule, or a 
protein on the NM surface, hydrophobicity, production of ROS. All of these require a 
modelling of the NM in realistic environments. 
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The major challenge here is the need to use multiscale models for the characterisation of 
interactions such as reliable and validated force fields. The relevant systems sizes of 
several nanometres are too large for direct atomistic simulation, so a coarse-grain 
description is required, which would be able to preserve information about the 
interaction specificity. In addition to this, the number of relevant molecules involved in 
the interactions with NM can be enormous, so the corona composition as such (i.e., the 
list of proteins known to interact with a specific NM) may be an impractical property to 
be used for predictions. Each NM immersed in plasma typically has its own unique 
corona that may involve hundreds of different proteins [175]. Abundances of proteins in 
the corona may reflect the properties of the NM that determine its propensity to bind 
certain types of molecule. Therefore, one should aim for statistical descriptors of the 
proteins interacting with the NM. 
 
In contrast to NMs, the development of descriptors for biomolecules is relatively 
straightforward due to their chemical uniformity, e.g., the same amino acids present in 
all proteins or the nucleic acids in all DNA/ RNA molecules. For proteins, the simplest 
descriptors can be constructed using their amino acid (AA) sequence. These can include 
counts of amino acids of different types, net charge or total mass. Already this 
characterisation is very rich and capable of predicting complex events at the Bio-Nano 
interface [116, 176]. Moreover, obtaining descriptors from AA sequences can be done by 
using a wide range of software tools such as the EMBOSS PepStats tool [177]. More 
advanced descriptors for proteins can be built by analysing their structure. In some 
cases, starting with the AA sequence of the protein the 3D structure of the molecule can 
be retrieved from the Protein Data Bank and then used to construct the descriptors. 
When the structure is not available, one can then use a structure prediction software. 
There are multiple automated tools available for this task, such as i-Tasser [178]. Using 
the measured or predicted 3D structure of the protein, several advanced descriptors can 
be calculated. Lopez et al. developed a one-bead-per-amino acid (united atom – UA) 
model of globular proteins, which is suitable for this purpose [179, 180]. Some examples 
of advanced descriptors that can be calculated include protein globule dimensions 
(radius of gyration and hydrodynamic radius), aspect ratio, dipole moment, rotational 
inertia, dielectric constant, hydrophobicity, surface charge at different pH and salt 
concentrations. In addition, protein charge at different pH can be calculated using the 
Poisson-Boltzmann cell model with charge regulation as reported by Barroso da Silva et 
al. [181]. 
 
For proteins, an evaluation of interaction properties requires an assumption about the 
protein structure at the conditions of interest. With the known 3D structure of the 
protein and the NM, Bio-Nano interaction descriptors can be systematically calculated 
based on how the proteins adsorb onto the surface of the NMs. While a calculation of the 
precise conformation of adsorbed molecules and a careful evaluation of ensemble 
averages is definitely a challenging task, several relevant quantities can be calculated 
using a simplified approach. To make the problem tractable, one can make two major 
approximations: assume additivity of the interactions between the building blocks of the 
biomolecule and the NM and neglect the change of conformation for adsorbed 
molecules. While these assumptions prevent one from obtaining accurate adsorption 
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energies, they allow for a uniform screening of thousands of molecules and ranking 
them based on how strongly they will attach to the surface of the NM. This ranking 
represents a statistical measure of the content of the biomolecular corona and 
constitutes a unique fingerprint of a NM. Using the united atom protein model [180], one 
can compute preferred adsorbed orientation and evaluate mean adsorption energy at 
different conditions. Moreover, using the same bottom-up construction approach, one 
can engineer an ultra-coarse-grained model (united amino acid - UAA) that closely 
reproduces the total protein-protein pairwise interaction energy profiles obtained in the 
united atom model. In the UAA model, one would typically need between 5 and 30 
united-amino acid beads to capture the geometry and reproduce the adsorption 
characteristics of the original protein. This second coarse-graining can be based on the 
mass distribution in the complete protein and can be optimised by tuning the protein 
diffusion coefficients to those obtained using UA model. The UAA model would be then 
suitable for modelling competitive protein adsorption and formation of protein corona 
[182]. 
 
An extensive gold NMs protein corona dataset was analysed in [117] to identify and 
quantify the relationships between NM-cell association and protein corona fingerprints 
(PCFs) in addition to NM physicochemical properties. Quantitative structure–activity 
relationships (QSARs) were developed based on both linear and non-linear support 
vector regression (SVR) models making use of a sequential forward floating selection of 
descriptors. In the above work, an initial pool of 148 descriptors was considered with 
the analysis eventually identifying four specific serum proteins, along with NM zeta 
potential as most significant to correlating NM cell association. 
 
In a series of papers examining organic molecule and biomolecule adsorption onto NM 
surfaces, Riviere and colleagues developed the Biological Surface Adsorption Index 
concept [183]. The adsorption coefficient is expressed as a logarithmic function of five 
descriptors: excess molar refraction (representing molecular force of lone-pair 
electrons); the polarity/polarisability parameter; the hydrogen-bond acidity and 
basicity; and the McGowan characteristic volume describing hydrophobic interactions. 
Experimentally obtained log K values can be used for determining 5 nanodescriptors 
describing surface forces related to adsorption.  

7.5 Challenge: Missing predictive models for some 
descriptors 
 
According to the mechanistic toxicity paradigm, the NM properties should be related to 
the molecular and biological modes of action. An approach to derive these relationships 
is for instance followed in the H2020 SmartNanoTox project 
(http://www.smartnanotox.eu/). Firstly, one has to focus on the Molecular Initiating 
Events (MIEs) of the AOPs, triggered by the NM interactions with the biological tissue. 
When MIEs are known, a calculation of the relevant descriptors becomes essential. 
Among the known candidate MIEs for NMs, one can name production of ROS, cellular 
uptake, NM cell association, or lysosomal damage. ROS production and oxidative stress 
are known to be correlated with the conduction band gap for metal oxide NMs [73, 184]. 

http://www.smartnanotox.eu/
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The models proposed in these latter works use reactivity descriptors to build the energy 
band structure of oxide NMs and predicts their ability to induce oxidative stress by 
comparing the redox potentials of relevant intracellular reactions with the oxides' 
electronic energy structure. At the same time, descriptors for interactions of NMs with 
lipids, lung or cell membrane, or receptor proteins are missing. Supposedly, they can be 
constructed based on molecular interaction descriptors, using the multiscale 
methodology as described above, and hydrophobicity descriptors.  
 
Another obviously missing property is NM dissolution rate, which is associated with ion 
release, in particular for metal-based NMs. Dissolution can be an important factor for 
understanding the biodistribution and also the cellular responses to a range of different 
NMs. It has the potential to become a key information to be used in a screening process 
for categorising NMs with common hazard potential based on their potential to release 
ionic species. Several approaches to this problem are taken by SmartNanoTox project: 
(i) comparisons of bond energies with solvation energies for a given ion/atom/molecule 
(ii) kinetic models to assess the timescale of any dissolution (iii) biased MD simulations 
of free energy barriers to dissolution of NMs including surface reconstruction and 
change on contact with water, (iv) where appropriate direct MD studies of spontaneous 
dissolution and the influence of surface ligands and coronas. If successful, these 
approaches will lead to a molecular understanding of the relevant mechanisms of hazard 
and tractable predictive models for different NM/ligand/water systems. In addition, 
catalytic activity of NMs can be assessed in the first instance by calculating frontier 
orbitals for given NM systems by density functional theory and correlating them with 
experimental data to provide tractable expressions for use in assessing toxicological 
activity. 
 
From the point of release, the state of the NM can change in many respects both before 
and after the contact with biological tissues. The affected properties may include 
oxidation, adsorption of foreign material from the atmosphere, waters or soil, partial 
removal of the engineered coating. The relevant descriptors are: time after release, 
temperature, coating quality (percentage of coverage), amount of pollutants. 

7.6 Challenge: Coupling and linking models for predicting 
biological events 
 
The ability of the NM to dissociate and produce reactive species, to affect the 
conformation of “vital” biomolecules, or to interfere in metabolic or reproductive 
processes determines the NM’s ability to cause hazardous effects. From a biological 
point of view, this can be explained as inducing MIEs leading to the initiation of an 
adverse outcome (AO), as suggested in the Adverse Outcome Pathway (AOP) framework 
(also refer to chapter 8.3). NM properties profoundly affect the molecular processes at 
the Bio-Nano interface. Thus, detailed characterisation of the NM after initial contact 
with organisms at different stages of the systemic transport can provide molecular level 
descriptors for “mechanism-aware” toxicity prediction schemes. Materials modelling 
along with experimental NM characterisation after the contact can be used to develop 
the relevant NM descriptors. At the first level, such descriptors would include 
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characterisation of the interfacial NM contact with biomolecules in terms of binding 
energies of biomolecule elements (amino acids, lipid headgroups, etc.). Such descriptors 
should be organised in a Bio-Nano interactions database, which will be used for 
prediction of the NM corona formation including characterisation of the corona outer 
surface, and prediction of likelihood of the particular hazardous effects. To finally 
develop the mechanism-aware QSARs, one should perform systematic analysis of the 
NM-induced pathways and map the NM physicochemical properties to the MIE and thus 
to the specific AO for any NM. This approach is described in detail in Chapter 8. The 
overall assessment scheme thus will combine materials modelling, systems biology, in 
vivo and in vitro studies.  
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8. Nano-Bioinformatics 
 
Sabina Halappanavar1,2, Penny Nymark3,4, Roland Grafström3,4, Dario Greco5, Andrew 
Williams1, Pekka Kohonen3,4 
 
1 Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada 
2 Department of Biology, University of Ottawa, Ottawa, Canada 
3 Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden 
4 Misvik Biology, Turku, Finland 
5 University of Helsinki, Helsinki, Finland 
 
Conventional human health risk assessment (HHRA) approaches, on which the chemical 
regulatory system is founded, involve the targeted assessment of specific adverse health 
effects such as carcinogenic, mutagenic, reproductive toxicity (CMR) effects or other 
adverse effects of regulatory importance, which typically involve animal studies. Often, 
this is time and cost-intensive, and moreover, requires prior knowledge of the mode of 
action. In addition, most of the chronic studies use maximum tolerated dose and thus 
lack broader application. The pace at which technology is evolving, new substances or 
chemicals are being added regularly to the market, requires rapid screening techniques 
to be included in safety assessment. Mostly, the type of toxicity induced by novel 
substances is not known. Due to the time and cost burden associated with the 
conventional testing regime, timely screening of novel chemicals for all potential 
hazards is not possible. Thus, newer approaches that significantly reduce time and cost 
are required and are constantly being sought to complete an assessment of a chemical 
for its potential toxicity, yet providing comprehensive understanding of the underlying 
mode of action of the toxicity. 
 
Comprehensive understanding of adverse effects induced by NMs will require a detailed 
appreciation of material physics and chemistry, and their anticipated behaviour at 
various levels of biological organisation including molecular, cellular, organ, and tissue 
levels as shown in Figure 10 (modified from [185]). Integration of the information 
derived from these various levels using statistical, mathematical and bioinformatics 
tools is the key to understanding the overall complexity of the biological responses 
induced by this novel class of materials and for their effective regulation [185, 186]. 
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Figure 10: Overview on systems biology for nanotoxicology (modified from [162]). 
 
With the advent of novel test methodologies involving e.g., high-throughput and high-
content approaches, biological data are being generated at a phenomenal pace. 
Sophisticated tools collectively known as ‘omics’ approaches that can generate 
exhaustive inventories of molecular entities on the level of genes (genomics), gene 
transcripts (transcriptomics), proteins (proteomics), small biomolecules 
(metabolomics), and biological networks (bioinformatics) in normal homeostasis 
condition but also under stress or during a disease process have been developed. 
Genome-scale sequencing tools have resulted in a renaissance of big data enabling 
visualisation of genetic landscape that is perturbed following a substance exposure. 
Consequently, the need for computers that can enable handle, organise and curate large 
datasets has become critical. Mathematical models and statistical algorithms have been 
developed to understand how the various molecular entities interact with one another 
and their relationship with the observed phenotype, i.e., cellular toxicity or disease 
process. 
 
Figure 11 shows various types of data that are used in bioinformatics or systems biology 
approaches, the ‘omics’ platforms available for genome-wide profiling and how 
integration of the various layers of omics data can enhance understanding and 
appreciation of the biology at action during normal and disease states in an organism, 
enabling holistic understanding (systems level) of the perturbed system. In general, the 
omics data can be categorised into three individual categories: components, interactions 
and functional states data [187]. Components data provide individual catalogues of 
molecular entities such as genes, proteins, lipids, and metabolites, etc. that are 
differentially expressed. Interactions data provide details on how these individual 
entities interact within a biological space, and functional state data incorporates data 
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from all ‘omics’ platforms and interactions data to reveal the cellular state or phenotype 
of an organism following a challenge. 
 
Table 4: Overview of various omics platforms (modified from Ref. [188]) and a brief explanation of the 
type of data that they generate. 
 

Omics Platforms 

Genomics Genome is the ‘blueprint’ that holds information on the structure and function 
of an organism that is encoded in the DNA (genetic material), organised in 
subunits of individual genes. Genomics is the study of this blueprint, i.e., genes 
and the interaction between them. Variations in gene sequences due to 
mutations can influence the organisms’ response to a stressor and alter its 
susceptibility to diseases. 

Transcriptomics The transcriptomics is the study of the complete set of RNA transcripts 
produced by the genome at a given time during development, normal 
homeostasis or disease states. Transcriptome is highly sensitive to the changing 
internal and external environment and thus, transcriptomic changes accurately 
reflect the organisms’ response to endogenous and extrinsic stimuli.  
Often the analysis is targeted to a specific subset of RNA transcripts with mRNA 
or microRNA being the most commons ones. 

Proteomics The proteins are functional units of genes. The proteomics is the study of the full 
set of proteins encoded by a genome enabling their identification and 
quantification during normal homeostatis and following exposures to stressors. 
The proteome helps understand the functional impact of altered transcriptome 
linking the gene expression changes to a phenotype (Phenome). 
Often highly sophisticated proteomics approaches use prior enrichment or 
subcellular fractionation approaches to specifically target only parts of a given 
proteome. 

Metabolomics Metabolomics is the study of metabolites (i.e., low molecular weight entities) 
present in biological fluids, cells and tissues. Altered levels of metabolites are 
good indicators of altered physiological states following exposures to stressors 
and thus, are used as sensitive markers of exposure and/or effects in 
biomonitoring and surveillance studies.  

Epigenetics Epigenetics is the study of changes in gene expression that are not the 
consequence of changes in DNA sequence. It is the study of chromatin and the 
effects of RNA interference on transcription. Chemical modifications to DNA or 
DNA-associated proteins involved in DNA packaging (chromatin) are one of the 
epigenetic mechanisms and methylation of DNA is one of the epigenetic 
endpoints commonly studied. Epigenetic changes are heritable, and are 
influenced by the environmental processes, environmental exposures. 

Microbiome The term ‘microbiome’ refers to analysis of the ensemble of microorganisms in 
a given environment, typically in the gut or on the skin. The study of taxonomic 
and functional changes to the composition of the microbiome and its impact on 
human health and disease is a rapidly evolving field in toxicology. Multi-omics 
technologies and advances in the computational and bioinformatics tools are 
playing an important role in advances in this field.  
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However, considering the ever-growing list of NMs and the next generation hybrid NMs 
appearing on the market, the comprehensive testing with ‘omics’ tools are not 
sustainable. Thus, a strategy involving few representative or benchmark classes of NMs 
of diverse physico-chemical properties should be queried in an organised and 
systematic manner using the ‘omics’ tools outlined in Figure 11. 
 

 
Figure 11: Experimental work flow and the information generated. 
 
A further means of systematic testing of NMs, taking the concept in Figure 11 into 
consideration, is depicted in Figure 12. A data-driven workflow applies new-generation 
high-throughput, high-content and omics technology in a systematic tiered framework 
to screen the effects of NMs and provide a comprehensive understanding of their toxic 
modes-of-action. The workflow has previously been described in various formats [189, 
190] and now also incorporates structure-based modelling as an initial step, where 
physicochemical identity-based prioritisation leads to screening of a limited number of 
toxicity endpoints, such as cytotoxicity, oxidative stress and immunological activity to 
establish dose–response relationships for thousands of ENMs. Subsequent steps 
involving high-content and omics methods lead to gradually broader characterisation of 
the toxic and/or subtoxic doses of selected, class-representative ENMs to the level of 
defining their toxic mechanisms. Finally, integrative bioinformatics across all assays 
gives a holistic view of ENM activity at the systems biology level and provides 
transcriptomic signatures indicative of the final toxic endpoint. The workflow is 
applicable to various cell types and more complex in vitro systems, such as co-cultures 
and spheroids. 
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Figure 12. A data-driven systems toxicology workflow where structure-based analysis and new-generation high-throughput, high-content and omics technology is 
systematically applied in tiered manners to screen the effects of engineered nanomaterials (ENMs) and provide comprehensive understanding of their toxic modes-of-
action. PTGS – Predictive Toxicogenomics Space, (Q)SAR – (Quantitative) structure-activity relationship, AOP – Adverse Outcome Pathway. Figure adapted and further 
developed from [189-191].
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The resulting data can then be used to inform various components of human health risk 
assessment process including [192], 

1. To identify hazard induced by toxic substances, thereby informing mechanisms-
of-action or modes of action 

2. To build adverse outcome pathways identifying causally linked key molecular 
key that result in disease development. 

3. To support the design and development of targeted mechanism-based in vitro 
assays that form the basis of novel predictive toxicology tools.  

4. To identify candidate markers of exposure or effects that inform biomonitoring 
and surveillance activities. 

5. To identify critical effect levels – derivation of transcriptomics/pathways-driven 
point of departure using dose-response modelling. 

6. To support weight of evidence (for data-poor materials, omics data can be used 
to link the exposure to an effect). 

7. To build gene/protein signatures that can be used to classify group of materials 
based on their genomic response. 

8. To prioritise materials that need further in-depth toxicity assessment by other 
methods. 

8.1 Transcriptomics – a case study in bioinformatics 
 
Gene expression profiling or transcriptomics, which measures changes in the coding or 
non-coding RNA in cells or tissues following exposure to a substance is currently the 
most advanced omics approach. Due to the mature microarray and sequencing 
technologies, the broad annotation of genes, and the availability of statistical software 
for reliable and reproducible analyses of the large data sets, transcriptomics is 
extensively applied to identify chemicals’ mode of action. In the context of NMs, a 
combination of gene and protein expression profiling and bioinformatics analyses has 
been applied to: elucidation of the mechanisms by which NMs induce pulmonary toxicity 
at an occupationally relevant dose [193-195]; identification of potential biomarkers of 
pulmonary effects induced by NMs [196-198]; characterisation of  sequelae of local 
inflammation (lungs) on other secondary tissues (e.g., heart and liver) following NM 
exposure; and validation of the relevance of in vitro data to predicting in vivo responses 
to NM exposure [199-201]. Moreover, a database of toxicity fingerprints that are specific 
to lung diseases [202, 203] and computational tools that can be used to predict the 
toxicity of new NMs that have yet to undergo experimental testing [202, 203] have been 
developed. More recently, Labib et al. [204] demonstrated how transcriptomics data can 
be used in an adverse outcome pathway (AOP) framework to identify the most relevant 
pathways or networks of interest to a disease, and strategies that can be used to 
calculate pathway dose-response that can then be used for calculating critical effect 
levels. Strongly coupled to this effort, a generalisable workflow for generating and 
enriching bioinformatically relevant AOP descriptions was recently described, which 
facilitate diverse AOP-targeted pathway analyses [205]. In addition, predictive tools 
based on chemical toxicity merit attention, since toxicological responses may be 
comparable at a mechanistic level. For example, an omics-based description of 
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toxicological responses that broadly captures and accurately predicts liver toxicity on 
both cellular and organismal level was recently described [206]. The so called Predictive 
Toxicogenomics Space (PTGS) describes several toxicity-associated mechanisms such as 
oxidative stress, cell cycle disturbances, DNA damage response and mitochondrial 
dysfunction, commonly also associated with NM [189]. In another study, a framework 
for predicting the hazards associated with complex mixtures of chemicals using single-
chemical transcriptomics data was established [207]. Thus, applicability of 
transcriptomics, not only to identify the subtle biological effects induced by low doses of 
NMs very early after the exposure, but also in risk characterisation of NMs has been well 
demonstrated. 
 
Although regulatory acceptance of transcriptomics data is not yet achieved, several 
efforts are being made to harmonise the protocols and data analyses methods. Guidance 
documents and development of standards are being established. A committee for the 
“application of genomics to mechanisms-based risk assessment” is established by the 
ILSI/HESI. OECD has established a Molecular Screening and Toxicogenomics advisory 
group and have initiated efforts to harmonise genomics approaches for risk assessment. 
The European Chemicals Agency have also initiated discussion among academia, 
regulators and industry on the implementation of new approach methodologies (NAMs) 
into regulations such as REACH [208]. However, for now, the data can be effectively used 
to inform about chemicals’ mode of action, identify important events relevant to disease 
progression and in the development of mechanisms-based high-throughput screening 
(HTS) in vitro assays that are predictive of in vivo responses. Moreover, for data poor 
substances such as NMs, the data can be used as weight of evidence, and for screening or 
prioritising NMs for further testing. 

8.2 Challenges moving forward 
 
While tremendous progress has been made in the area of transcriptomics, several 
challenges lie ahead. Prior to its routine inclusion in safety testing of substances and 
regulatory acceptance, standard operating protocols (SOPs) are needed, data reporting 
and data analysis, quality control including suitable standards or benchmarks, analysis 
algorithms have to be developed, established, standardised and/or harmonised. 
Internationally guidelines or guidance documents are needed. The regulatory 
acceptance criteria have to be developed and areas of regulatory applications have to be 
identified. Appropriate training courses to analyse and interpret transcriptomics data in 
a consistent manner must be established. In addition, appropriate data management 
strategies are a fundamental requirement for efficient nano-bioinformatics. Databases 
for storing omics data in standardised formats are available and provide access to NM-
associated omics data. However, metadata and associated toxicological and physico-
chemical data requires NM-specific databases capable of linking to the external omics 
databases. An example of such a NM-specific database is the eNanoMapper database 
[49]. This will enable linked and annotated (using ontologies as outlined in Section 5 of 
this report) build-up of transcriptomics data for reference substances, useful in further 
nano-bioinformatics modelling approaches. 
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Other challenges involve data, tools, software and model sharing. Although some 
published datasets are deposited in the public repositories and are accessible, the 
reporting formats for NM and their associated toxicity and physico-chemical data are 
not standardised for use by other researchers. Transcriptomics is one of the most 
extensively tested and applied genome-wide profiling tools, although standards are yet 
to be developed for data analysis and data representation. Transcriptome profiling can 
involve different microarray platforms and based on the statistical algorithms used, the 
interpretation of the data can vary from laboratory to laboratory. Thus consistency, 
reproducibility and reliability are the major issues that need to be tackled and may be 
addressed to some extent within the nanosafety community by the establishment of 
consistently tested reference NM data sets. 

8.3 Application of other ‘omics’ data to nanotoxicology 
 
Because of methodological limitations and the large diversity of proteins and 
metabolites within the biological samples, proteomics and lipidomics are not applied as 
extensively as transcriptomics. However, data derived from other ‘omics’ platforms have 
been used to gain an understanding of the underlying mechanisms of NM induced 
toxicity. Multi-omics approaches involving lipidomics, proteomics, miRNomics (i.e., 
microRNAs) and transcriptomics have been applied to derive an understanding of 
carbon nanotube induced toxicity [199, 209-211]. A redox proteomics approach was 
proposed as first tier screening method for prioritisation of NMs for further testing 
[212]. Thus, each omics platform will provide a unique perspective of the changing 
phenotype, and development and validation of tools that aid in managing, processing 
and integration of multi-platform data towards biologically meaningful interpretation of 
the observed changes will be the key. The use of (multi-) omics approaches in 
nanosafety has recently been reviewed [213]. 

8.4 Omics data analysis methods 
 
As stated above, the key to obtaining biologically relevant results from the microarray 
studies is the stringent and accurate analysis of large and complex datasets using 
appropriate statistical and bioinformatics methods. Figure 13 shows the steps involved 
in analysing ‘omics’ data in general.  
 
For many omics technologies and platforms several analytical steps are conceptually 
common. First, the raw data files must be read into the software environment, the 
quality of the raw data needs to be evaluated in order to ensure that technically 
suboptimal data points are excluded. Next, the data preprocessing, consisting mainly of 
normalisation and batch effect evaluation and correction are carried out. Primary 
normalisation and data filtering for factors contributing to variation such as differences 
in dye incorporation, hybridisation efficiencies, etc. within arrays and across arrays will 
enable identification of differentially expressed genes or proteins. Handling batch effects 
successfully is largely accepted to be a crucial aspect of omics data analysis, but is 
unfortunately still neglected and poorly documented in many published studies [214-
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216]. However, as current microarray and RNA-seq platforms have a relatively good 
level of technical reproducibility, the largest sources of bias in experiments tends to be 
the biological material itself [217]. Known biases such as, cell culture growth batches 
can be modelled as long as a balanced experimental design has been employed, e.g., 
using the LIMMA linear modelling or general linear modelling framework. Since omics 
experiments are derived from complex protocols consisting of multiple steps, the 
probability to introduce unwanted bias, which is not otherwise corrected by data 
normalisation, remains high. Several normalisation methods are available and the choice 
of one over the others depends on intrinsic properties of the omics technology used and 
on the experimental design. The scientific community has largely converged on the use 
of methods and tools implemented in the R programming language as it is free and 
publicly available. Bioconductor provides tools for the analysis of high-content genomic 
data and is open source and open development (www.bioconductor.org). A few of the 
widely used normalisation methods include, locally weighted scatterplot smoothing 
(LOWESS) or data-driven LOWESS, and robust multi-array analysis (RMA). 

 

 
Figure 13: Generalised flow chart of data analysis used in omics. 
 
Typically, the identification of the molecular species responding to a specific exposure is 
carried out by using univariate statistical methods that aim at testing each molecular 
feature in the data set individually [218]. Upon the definition of likelihood (usually p-
values) and magnitude (fold changes) of the molecular alterations, the features that are 
significantly responding to a given exposure are identified and lists of e.g., differentially 

http://www.bioconductor.org/
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expressed genes (in the case of transcriptomics) are compiled. In transcriptomics data 
analysis, a number of methods have been proposed, of which linear models followed by 
eBayes testing gained enormous popularity [219]. Since microarray analysis involves 
multiple comparisons, false positives are very common and thus, tests such as the 
moderated t-tests were developed specifically for microarray analysis. The p-values 
from the statistical test are then adjusted either using the false discovery rate (FDR) 
correction to minimise the number of false positives or by controlling the Family-wise 
error rate (FWER) for example with Bonferroni correction. A false discovery rate 
adjusted p-value of less than 0.05, and a fold- change cut-off of 1.5 in either direction are 
routinely applied to the microarray datasets. The resulting stringent list of differentially 
expressed genes or proteins is then queried to identify altered functional pathways. 
Advanced statistical techniques such as various types of clustering (e.g., hierarchical, K-
means) or self-organising maps (SOMs) enable identification of similar expression 
patterns across the samples, signatures specific to a class of chemicals, tissue or a cell 
type or a phenotype. The various statistical methodologies used to analyse the big data 
are summarised in Section 6. 
 
In toxicogenomics, efforts establishing reproducible data analysis frameworks that are 
communicable to regulators are currently being established. The MicroArray Quality 
Control (MAQC) consortium accessed the technical performance and application of 
‘omics technologies for clinical application and safety assessments. The consortium 
completed three projects evaluating the performance of microarrays, genome-wide 
association studies and RNA-sequencing, with particular reference to the reproducibility 
of transcriptomics data, between-experiment concordance, within-laboratory 
repeatability, and cross-platform reproducibility. The results from these studies indicate 
that using a p-value and a fold change threshold and subsequently sorting by the fold-
change to identify the most prominent differentially expressed genes enhanced 
reproducibility of the results while balancing the sensitivity and specificity. The work of 
the consortium has advanced microarray and RNA-seq analytical pipelines that can be 
leveraged for developing data analysis frameworks and best practices [192]. However, it 
should be also considered that, given the complex nature of the molecular interactions, 
multivariate analysis could help highlighting additional sets of molecular features that 
might not be strongly associated to exposure effect when considered independently 
[220-222]. In this sense, multivariate approaches relying on machine learning 
algorithms can also aid the finding of molecular biomarkers with toxicity predictive 
value to be further implemented in high-throughput targeted assays. 
 
The primary readout of omics experiments usually consists of lists of molecular features 
significantly altered due to an exposure of a chemical. To further facilitate the 
interpretation of these results, the molecules (genes, proteins, or metabolites) are 
mapped onto existing pathway databases and gene ontologies. Eventually, the goal is to 
anchor the expression changes at the gene or protein levels to the observed phenotype 
in an organism. A single gene or protein may be involved in multiple functions and 
therefore identifying isolated groups of genes or proteins that are differentially 
expressed may not be sufficient to understand the perturbed biology. Software tools for 
the systematic annotation of gene interactions derived from the literature are available. 
Classification systems such as gene ontology tools help identify categories of molecules 
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that are altered following exposure. Kyoto Encyclopaedia of Genes and Genomes [223], 
Gene Microarray Pathway Profiler [224], Ingenuity Pathway Analysis [225] or 
WikiPathways [226] tools can be used to identify pathways and functions that are 
perturbed following exposure to substances in experimental models. Although these 
literature-based tools often provide network representations of co-citation 
relationships, they are not really providing any regulatory gene network inference 
capability. 
 
The statistical evaluation of the pathway and ontology over-representation is usually 
performed either by a hypergeometric test or a Kolmogorov-Smirnov test. Many tools 
are freely available online for carrying out this task, which is typically performed by 
uploading, for instance, a list of differentially expressed genes onto a web service and 
retrieving lists of significantly enriched biological themes. It should be noted that these 
services do not always include updated version of the pathways and ontologies 
definitions, risking introduction of bias in the outcome [227]. A robust approach that 
considers the complexity of biology and avoids testing isolated genes for significance is 
gene set enrichment analysis (GSEA). The method determines whether a priori defined 
sets of genes, such as pathways or gene ontologies, are statistically over-represented in 
relation to genes outside the pathway when compared to an exposure control [203, 
228]. These methods can be assumed to allow better comparison between diverse omics 
data sets [203, 229]. Furthermore, the results are then useful for omics-based scoring 
methods, which can be used for predictive modelling [190, 206]. As stated early in the 
section, omics data can be used to construct AOPs [205, 207] and mechanistic 
descriptions of key events are being incorporated within a broader biological / 
toxicological context. GSEA using toxicity-predictive gene sets can be used to evaluate 
quantitatively such key events.  
 
In recent years, multi-omics approaches have been used in an increasing number of 
biomedical fields. The aim in this type of analyses is to portray a more comprehensive 
landscape of a biological state of interest by interrogating multiple molecular 
compartments from the same biological system. Computational methods specifically 
addressing multi-omics modelling have been proposed [230-233], but this approach is 
still under-used in nanotoxicology, mainly focusing on a few studies on multi-walled 
carbon nanotubes [193, 199, 234, 235]. 
 
Omics analysis is normally referred to as a high-content analysis, where few samples are 
tested for a high number of parameters (e.g., genes) and is relatively slow and costly. 
However, reduced sets of toxicity-associated genes can be assayed at higher throughput 
and lower cost, e.g., Luminex® or more recently TempO-seq (RASL-seq) targeted RNA 
sequencing technology [236]. To the benefit of the nanoinformatics community, high-
throughput transcriptomics platforms are in development, e.g., in the LINCS and the 
Tox21 Phase III projects, and enable rapid gene profiling experiments with both several 
doses and biological replicates using multiple models of 800–1500 genes (reviewed in 
ref. [237]). Although, NM effects analysed using traditional microarrays, such as Agilent 
or Affymetrix GeneChips®, form the basis for most existing gene profiling analyses of 
exposure to NMs and provide reference values for recent next-generation sequencing 
and future generation of HTS data from selected toxicity-reflective gene sets. 
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There is also a clear need to develop new technologies and incorporate novel data 
streams for human health risk assessment. For example, applying toxicogenomics to 
characterise the biological responses to exposures to NMs and evaluate possible dose-
response relationships [204, 238, 239]. Software such as BMDExpress provides an 
opportunity to conduct such analyses [240]. Benchmark dose analysis along with 
multivariate techniques such as GSEA [203] to derive the most sensitive enriched 
pathway as well as the overall median BMD value for key gene members of significantly 
enriched pathways, provide good estimates of the most sensitive apical endpoint 
benchmark dose [241, 242]. 
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9. The community: Overview of Stakeholders 
 
Andrea Haase1, Iseult Lynch2, Danail Hristozov3, Kai Paul4, Andreas Falk5 
 
1 German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, 
Germany 
2 School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT 
Birmingham, United Kingdom 

3 Greendecision Srl.  
4 Blue Frog Scientific Limited, Quantum House, 91 George Street, Edinburgh, EH2 3ES, United Kingdom 
5 BioNanoNet Forschungsgesellschaft mbH, Graz, Austria 
 
Different nanoinformatics stakeholders may be identified and described via different 
approaches. One approach is based on the data life cycle (Figure 14) as described by 
Harper et al. [243]. 
 

 
 
Figure 14: Overview of nanoinformatics stakeholders according to the data life cycle.  
 
The data life cycle starts with the generation of (raw) experimental data by different 
independent researchers or research groups (Data Creators in Figure 14). Typically, 
these data are processed, analysed, and published by those groups. Unfortunately, and 
despite long ongoing discussions, in most cases the raw and also the fully processed 
datasets are not published alongside the scientific publication. Some other scientific 
fields like protein crystallography or proteomics, in contrast, require that the primary 
data be stored in a database as a prerequisite for any peer-reviewed publication. In 
these fields, there is a long tradition of depositing data in publicly accessible databases 
and accordingly, knowledge is created not only by new experimental data but also by re-
analysing existing data in data repositories. 
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In the field of nanoEHS, however, in silico toxicologists (Data Analysts in Figure 14) 
aiming to derive computational models from primary data often need to extract the data 
and metadata from the published literature to use it for computational analysis and 
predictive modelling. Although data extraction from publications is possible, and can be 
facilitated by computational means, this approach is still limited. Importantly, this will 
result in loss of data as publications usually highlight certain data in a study that fits the 
message of the authors. In addition, the authors usually depict mean or median values 
only, the whole set of experimental results is only rarely included. No effect data or data 
that does not demonstrate the sought-after effects are often not published at all. It is 
well known and widely acknowledged that in particular no-effect data are very 
important for regulatory decision-making, but they are also important for the 
advancement of nanoEHS science in general. 
 
Storing all nanoEHS data in federated, interoperable data repositories would allow for 
inter-laboratory comparisons and support the definition of the errors and variability 
within and between studies. It would also serve a range of other purposes such as 
supporting the establishment of NM grouping approaches, facilitating the generation of 
various in silico models, enabling meta-analysis of data etc. Overall there would be 
plenty of benefits starting from the level of the individual researcher up to the scientific, 
regulatory and industrial communities, as summarised in Figure 15.  
 

 
  
Figure 15: Impact of nanoinformatics for various stakeholders. 
 
Looking into the various stakeholders from the perspective of academia, industry and 
regulators one may assume that each has own specific needs and objectives.  
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Thus, it appears unlikely that there will one single fit-for-all-purpose database. However, 
there might be common data elements that would be useful for field-specific purposes as 
well as serving the dual role of being useful for predictive modelling and establishing 
structure-property relationships. 
 
For example, researchers in academia (experimentalists and modellers) generate most 
of the current experimental/ model data populating the databases. Their main driver is 
the generation of new knowledge often from a more fundamental perspective. Thus, 
their central need is to deposit their data in an access-controlled manner (at least until 
published), to search data using various query tools, and to retrieve data for data-
sharing, data-reuse and modelling purposes. Researchers may or may not be aware of 
how useful their data can be for other purposes such as regulatory decision-making or 
industrial innovation processes. 
 
Industry stakeholders comprise various types of industries ranging from manufacturers, 
downstream users, insurance companies, contract research organisations and 
regulatory consultancies. Each has very different information and level of details needs. 
A significant portion of experimental and model data is actually generated by industry 
but typically only a fraction of that data would be stored in public databases due to 
proprietary issues. Industry for instance might be more interested characterising a new 
material early in a development phase to learn whether the material properties are 
useful for the specific product needs and to get early warning signs of possible hazards 
and risks of the material. Regulators, finally, would appreciate linkages between specific 
material properties and hazards that they then can feed into specific regulatory actions. 
 
Table 5: Summary of needs for different stakeholders. 
 

  Stakeholder 

GOAL Academia Industry Regulator 

Secure experimental data by uploading into (public) 
databases X X X 

Use data for design of new experiments/ 
experimental studies (e.g., for compound selection 
etc.) 

X X (X) 

Use existing data for substance prioritisation X X X 

 Use data for model building X X X 

Use of data for performing or interpretation of risk 
assessment (X) X X 

Use of data for innovation process (e.g., safe-by-
design, new product development) (X) X - 
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One of the most important elements needed to progress the field of nanoinformatics is 
fostering and enhancing dialogue between different stakeholders so that they become 
aware of the needs of other stakeholders. As nanoscience and nanoEHS are highly 
interdisciplinary, nanoinformatics can only mature if all the stakeholders actively 
participate in this process. 
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10. The Community: Impact on Stakeholders 
 
Danail Hristozov1, Andrea Haase2, Nina Jeliazkova3, Iseult Lynch4, Kai Paul5, Wendel 
Wohlleben6, Marc A. Williams7, Alan J. Kennedy8, Lisa Strutz9 
 
1 Greendecision Srl. 
2 German Federal Institute for Risk Assessment, Germany 
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4 School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT 
Birmingham, United Kingdom 
5 Blue Frog Scientific Limited, Quantum House, 91 George Street, Edinburgh, EH2 3ES, United Kingdom 
6 BASF SE, Ludwigshafen, Germany 
7 U.S. Army Public Health Center (APHC), Toxicology Directorate, Aberdeen Proving Ground, MD, USA 
8 U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA 
9 APHC, Environmental Health Sciences & Engineering, Aberdeen Proving Ground, MD, USA 

10.1 Impact on Academia 
 
To confidently predict the properties, interactions and/or adverse (eco)toxicological 
effects of NMs, access to high quality data and metadata is essential. The myriad of 
nanosafety projects have attracted hundreds of millions of euros investment. This 
inward investment has paid off and translated to the generation of a significant body of 
highly relevant physico-chemical, toxicokinetic, fate, and exposure and (eco)toxicity data 
in a little over a decade of applied research. However, this information is only accessible 
via disparate and heterogeneous sources, which offer different types of information in 
many different formats (e.g., technical reports, excel spreadsheets, data inventories, 
knowledge bases, scientific publications). However, for nanoEHS safety assessment the 
most practical method of making efficient use of this significant body of data is to ensure 
that all data are uploaded promptly to selected databases. Subsequently, curated and 
aggregated data should be accessible and linkable to relevant modelling tools. The 
intention is to make the data accessible to their potential end-users by means of user-
friendly interfaces.  

In addition to the modelling community, others (e.g. regulators, industry) will benefit 
from ready-to-use curated datasets, spanning endpoints of regulatory importance, and 
from open source and/or open access modelling components, developed in 
collaboration with experts from the respective scientific domains. This will also allow 
comparison between different modelling approaches, which will ultimately lead to an 
advancing of the field and a wider (i.e., regulatory) acceptance of nanoinformatics. The 
inclusion of data quality and completeness criteria, including information that guides 
the end-user on what is technically and analytically feasible from particular 
experimental designs, will serve as a unique asset in strengthening the trust and validity 
of the results derived from a given model system. The modelling community will also 
benefit from the interoperability of curated data and specific modelling components, 
which will permit dynamic retrieval and analysis of the data, and do so beyond static 
datasets. 
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Finally, the challenging goal of developing and implementing a global infrastructure will 
markedly strengthen research cohesion and international collaboration that has already 
been initiated, e.g., within the EU NanoSafety Cluster (www.nanosafetycluster.eu) or 
within the US-EU Nanotechnology Communities of Research (https://us-eu.org/). 
However, it will require long-term coordinated cooperation among EU and US scientific 
programs, initiatives, and institutions to avoid potential overlap or redundancy and to 
strengthen complementary efforts that will bring vested groups or individual scientists 
closer to this overarching goal. Moreover, this goal will likely exert a marked impact on 
international efforts for harmonising and standardising ontologies and data 
representation and in sharing specifications. 

10.2 Impact on Industry 
 
Several types of industries attempt to discover or design outstanding product 
performance and use nanotechnology and multiscale modelling to achieve this. The 
solution might include particle-based nanostructures, but might also achieve the 
required balance of performance, price, safety and sustainability via other routes, 
including but not limited to, process- or reaction-induced nanostructures in 
macroscopic parts. Nanoinformatics tools are thus embedded in modelling for the wider 
concept of “Advanced Materials,” (i.e., Materials for Key Enabling Technologies, 
European Science Foundation, Materials Science and Engineering, Expert Committee 
(MatSEEC)).  
 
It is anticipated that industry will benefit from obtaining data and modelling capabilities 
useful for design of “safer” materials (i.e., those materials that display more acceptable 
EHS profiles) and products of market-ready quality. There is already a significant and 
growing market for data-driven modelling solutions that can optimise the cost of 
regulatory risk assessment and support safer product design. Thus, once implemented, 
the nanoinformatics data curation and modelling infrastructure could increase 
confidence in the nanotechnology enterprise with the aim of encouraging innovation 
across several sectors. These sectors include, and would certainly not be limited to, 
electronics, construction, packaging, food, energy, healthcare, and automotive. 
 
In addition, companies, especially small- and medium-sized enterprises (SMEs) with 
limited resources for health and safety management, are expected to benefit greatly 
from this interoperable data curation and modelling infrastructure. Implementation of 
this system via existing risk assessment and management tools (e.g., SUNDS, 
http://www.sun-fp7.eu/sunds/) can have significant practical value for both industry 
and regulators alike since it would enable integration of technical data by incorporating 
the risks, benefits and costs of NMs into sustainability portfolios. This process would 
enable derivation of informed decisions on how best to address safer production, 
downstream use and end-of-life treatment of NMs. Technologies like those described 
above, also have the capacity to assist decision-making in industrial applications – a 
process that would enable decisions to be made on whether or not to invest in new 
nanotechnology product development or in selecting alternatives. Such a user-friendly 
nanoinformatics infrastructure will have practical impact, since it will enable regulators 

http://www.nanosafetycluster.eu/
https://us-eu.org/
http://www.sun-fp7.eu/sunds/
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to prioritise NMs based on their relative risk profiles, and will permit the selection of the 
most adequate risk mitigation measures. 
 

Nanoinformatics and the associated modelling infrastructure will be a significant aid to 
industry risk assessment in different regulatory frameworks (i.e., U.S. EPA TSCA, EU 
REACH, etc.) and in reducing the costs and time that are required for new product 
research, development and innovation (R&D&I). For example, under REACH (Article 13, 
Article 25 and Annex VII-X), animal testing should only be conducted as a last resort, 
after all other forms of data acquisition are exhausted. This arises from the use of the 
data derived and synthesised from the literature or databases, use of QSAR analyses or 
read-across from chemical analogues. However, this is strictly dependent on the 
availability of high-quality data within databases and the data being easily searchable. 
As laid down in the mutual acceptance of data (MAD) principle of OECD (OECD, 1981), 
use of experimental data for regulatory purposes requires that data has been generated 
according to specific technical guidelines (i.e., OECD TG) and that good laboratory 
practices (GLP) have been observed. Similarly, when models are used for regulatory 
purposes, it is requested that the model be established and validated (please refer to 
Section 6). 
 
The most important current drawbacks include the scarcity of high-quality data from 
current databases or repositories that has been generated by validated or harmonised 
test methods, the small number of available datasets utilising widely accepted controls, 
or the availability of benchmark materials that could support comparative analysis of 
different sets of data. In addition, data are most often stored in widely dispersed, 
differentially available data repositories, which, moreover, often use different 
ontologies. Furthermore, any data generated by industry under currently unsuitable or 
non-standard guidelines might be wasted and even under conditions where this data are 
available, it will not advance the knowledge of the nano-community. 
 

The availability of a nanoinformatics platform that combines data curation with 
modelling capabilities and user-friendly interfaces would be particularly interesting for 
SME, enabling them to more readily perform EHS assessments, to reduce their R&D&I 
costs and enable them to more effectively compete with larger industries. Moreover, the 
application of high-quality curated data should reduce the degree of uncertainty in the 
risk assessment process and could improve the process of risk communication. These 
measures have the capacity to contribute strengthened confidence in market 
interpretation of their products and to improved business cases. 

10.3 Impact on Regulatory Agencies 
 
The nanoinformatics data and modelling infrastructure will markedly impact the safety 
assessment of NMs. Most importantly, it will provide regulators access to curated data 
sets covering many different NMs and nanoforms, thus strongly enhancing predictive 
capability at moderate cost, facilitate comparative analysis, support weight of evidence 
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approaches, allow informed hazard analysis and exposure science, and foster the 
application of modelling in the setting of risk characterisation, analysis and assessment. 
 
Nanoinformatics infrastructure might also support advancing regulatory science and 
regulation. For instance, the possibility of comparing data that originate from different 
assays covering the same endpoint could reveal possible deficiencies within those 
assays and across similar end-points. When one considers the fact that the majority of 
the tests and test guidelines are not yet formally adapted to meet the needs for NMs 
[244], these insights are critical and urgently required to increase the confidence in 
decision-making. The data might also highlight whether or not there is a need to use 
different assessment factors for NMs. Finally, nanoinformatics can support the 
responsible implementation of NM-specific adaptations in current regulatory 
frameworks. This can only be established once comprehensive and curated datasets are 
available. Thus, nanoinformatics can assist the progression and iterative processes of 
regulatory legislation. Moreover, this type of legislation and the guidance accompanying 
it (testing and practical guidance procedures), can provide industry with a degree of 
confidence in following a regulatory framework to achieve specific compliance 
objectives. Under many frameworks including REACH, there is a need to draft specific 
and detailed guidelines for testing of NMs, currently still is under development. For 
instance, currently there are many NM physio-chemical properties identified within 
IUCLID. However, there is no coordinated consensus on which of these properties are 
the most important ones for a given purpose, or a robust definition of those properties. 
In addition, there is no legal obligation to reveal proprietary physico-chemical 
properties. It is impractical to assess each property for every NM or nanoform due to the 
cost, time, and relevance. However, within REACH increasing clarity is expected from the 
amendments to the annexes for the registration of NMs, currently in progress and 
expected to be in force in 2020. 
 
However, nanoinformatics can aid in many areas of dossier preparation, which would 
thus permit a responsible, time- and cost-effective release of the NM to the market. 
 
When properly realised, nanoinformatics data can support the formal 
adaptation/validation of existing testing methods to meet the specific needs of NMs and 
at the same time aid in the creation, implementation and validation of new testing 
methods that might have utility for screening purposes. In addition, novel methods that 
are more tailored toward the discovery of Mode of Action (MoA) approaches can be 
potentially validated in the near future. Such tests would include screening methods and 
functional assays that are central to developing intelligent testing strategies (ITS) or 
Integrated Assessment and Testing Approaches (IATAs). These include in silico, in 
chemico, in vitro and a variety of evolving omics methodologies developed to reduce 
reliance on and use of animals in toxicological screening assays or basic research. Thus, 
not only might the data have utility in NM regulation, but it might also support a wider, 
overarching objective aimed at further developing and validating alternative methods. It 
should be noted that the European Chemicals Agency (ECHA) has already initiated 
discussion among academia, regulators and industry on the implementation of new 
approach methodologies (NAMs) into regulations such as REACH [208]. 
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Additionally, validated, high quality data could be collated in a comprehensive 
repository, such as EUON (https://euon.echa.europa.eu/). Long term, this database 
might then be used by OECD QSAR toolbox for example, to permit read-across, data 
collation, and trend analysis for data-gap filling for NMs. Importantly, such models might 
also be used to screen for substances of concern, which would then be placed on 
relevant lists for further actions such as the CoRAP (community rolling action plan) list 
or SVHC, which is the list of substances of very high concern. Furthermore, for data poor 
substances such as NMs, this data collection can be used to support weight of evidence 
approaches. 
  

https://euon.echa.europa.eu/
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11. Overview of selected Databases and Projects 
 
Andrea Haase1, Iseult Lynch2, Nina Jeliazkova3  
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3 Ideaconsult Ltd, Sofia, Bulgaria 
 
The following general (not nano-specific) databases may be of interest to the nanoEHS 
community (Table 6) and may provide some important general approaches. 
 
Table 6: Overview of selected general (i.e., not nano-specific) databases. 
 

Name Link Description 
eChemPortal https://www.echemportal.org/echemportal

/index.action  
Global Portal to Information on Chemical 
Substances 
(includes information on physico-chemical 
properties, ecotoxicity, environmental fate 
and behaviour, toxicity) 

ChEMBL https://www.ebi.ac.uk/chembl/  manually curated chemical database of 
bioactive molecules with drug-like 
properties, contains compound bioactivity 
data (e.g., Ki, Kd, IC50, and EC50) 

ChEBI https://www.ebi.ac.uk/chebi/  a freely available dictionary of molecular 
entities focused on ‘small’ chemical 
compounds 

ChemSpider http://www.chemspider.com/  a free chemical structure database providing 
text and structure search access to over 58 
million structures  

PubChem https://pubchem.ncbi.nlm.nih.gov/  Free database of chemical molecules, 
consists of three dynamically growing 
primary databases.  
- Compounds (82 million entries) 
- Substances (198 million entries) 
- BioAssay (1.1 million entries) 

DrugBank https://www.drugbank.ca/  unique bioinformatics and cheminformatics 
resource that combines detailed drug data 
with comprehensive drug target information 

ToxNet https://toxnet.nlm.nih.gov/  group of databases covering chemicals and 
drugs, diseases and the environment, 
environmental health, occupational safety 
and health, poisoning, risk assessment and 
regulations, and toxicology 

ToxBank http://toxbank.net/  central data warehouse for toxicity data 
management and modelling, includes a "gold 
standards" compound database, a repository 
of selected test compounds, a reference 
resource for cells, cell lines and tissues of 
relevance for in vitro systemic toxicity 
research 

ToxCast https://www.epa.gov/chemical-
research/toxicity-forecaster-toxcasttm-
data  

EPA's most updated, publicly available high-
throughput toxicity data on thousands of 
chemicals 

ToxRefDB http://actor.epa.gov/toxrefdb  provides detailed chemical toxicity data 

https://www.echemportal.org/echemportal/index.action
https://www.echemportal.org/echemportal/index.action
https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chebi/
http://www.chemspider.com/
https://pubchem.ncbi.nlm.nih.gov/
https://www.drugbank.ca/
https://toxnet.nlm.nih.gov/
http://toxbank.net/
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
http://actor.epa.gov/toxrefdb
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ECHA DB https://echa.europa.eu/information-on-
chemicals/registered-substances  

Provides information on substances 
registered with ECHA 

Array Express https://www.ebi.ac.uk/arrayexpress/  Functional genomics data 
TG-GATES http://toxico.nibiohn.go.jp/english/  Toxicogenomics data 
Gene 
Expression 
Omnibus 

https://www.ncbi.nlm.nih.gov/geo/  High-throughput Expression Data 

Organism 
specific 
databases 

http://www.wormbase.org/#012-34-5, 
http://wfleabase.org/database/  

Genomic data for the various species 

 
There are important differences between the US and the EU approaches for funding 
nanosafety that should be highlighted. Over the last 10 years or so, the US had a 
concerted effort on nanoEHS with three large-scale centres of excellence, CEINT at Duke 
University, UC CEIN at UCLA and more recently CNN at Harvard. In contrast, the EU has 
funded over 50 nanoEHS-related projects each ranging from 2-4 years in duration and 
involving up to 30-70 different institutions. Somewhat confusingly, in the EU both the 
project and the outputs from the project often carry the project name, so datasets are 
often referred to as the NanoXY project dataset, and the NanoXY project tool etc. In 
addition, there is a strong incentive for tools/approaches/ontologies development in 
one of the EU projects to be carried forward into subsequent projects. An agreed naming 
convention for these co-developed hybrid-products has yet to be agreed upon. This is an 
important issue for the EU nanoinformatics community to resolve sooner rather than 
later in terms of making real progress and strengthening clarity for international 
collaborators. 
 
Within the OpenRiskNet (www.openrisknet.org), which is a project funded under the 
Horizon 2020 EINFRA-22-2016 Programme (project ID: 731075) an open e-
infrastructure will be delivered, which will provide resources and services to a variety 
of communities requiring risk assessment, including chemicals, cosmetic ingredients, 
therapeutic agents and NMs. OpenRiskNet is working with a network of partners, 
organised within an Associated Partners Programme. One of the OpenRiskNet case 
studies will address specific needs identified by the nanosafety community. The case 
study will be defined based on project partners’ experience in NanoEHS projects and 
activities within the EU NanoSafety Cluster (EU NSC) working groups and task forces. 
Interactions with nanosafety projects have already been established in order to identify 
the key questions to be addressed, and where the OpenRiskNet infrastructure could be 
deployed and tested. OpenRiskNet will support the sustainability and further 
development of the eNanoMapper infrastructure supporting nanoEHS and EU NSC 
needs. It offers the potential to incorporate data and tools developed within the NSC 
within the broader European scientific infrastructure and to combine them with 
resources developed within other areas such as chemical safety assessment. 
 
More specifically addressing the informatics needs of the nanosafety community, the 
Horizon2020 NanoCommons (https://www.nanocommons.eu/) project (project ID: 
731032) will establish a nanoinformatics platform to convert the nanoEHS scientific 
discoveries into legislative frameworks and industrial applications, through concerted 
efforts to integrate, consolidate, annotate and facilitate access to the disparate datasets, 
drive best practice and ensure maximum access to data and tools. Networking Activities 

https://echa.europa.eu/information-on-chemicals/registered-substances
https://echa.europa.eu/information-on-chemicals/registered-substances
https://www.ebi.ac.uk/arrayexpress/
http://toxico.nibiohn.go.jp/english/
https://www.ncbi.nlm.nih.gov/geo/
http://www.wormbase.org/#012-34-5
http://wfleabase.org/database/
http://www.openrisknet.org/
https://www.nanocommons.eu/
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(Figure 16) will span community needs assessment through development of 
demonstration case studies (e.g., exemplar regulatory dossiers). Joint Research 
Activities will integrate existing resources and organise efficient curation, preservation 
and facilitate access to data/models. Transnational Access will focus on standardisation 
of data generation workflows across the disparate communities and establishment of a 
common access procedure for access to the data and the modelling and risk 
prediction/management tools. NanoCommons will integrate across EU and US 
approaches to nanosafety data management and includes efforts to ensure 
sustainability of the nanosafety knowledge infrastructure through an advanced 
infrastructure and eventual integration into the EU Observatory for NMs (EUON, 
https://euon.echa.europa.eu/). 
 

 
Figure 16: Schematic illustration of the positioning of NanoCommons and how it will provide an 
integrating platform for the nanosafety knowledge community in Europe and internationally. 
  
Appendix 1 provides a brief overview of some the recently finished or currently running 
projects, whose main efforts were targeted towards databases. It is not intended as a 
complete overview, as projects contributed text voluntarily, rather than being added 
systematically. Table 7 provides an overview of the main databases and datasets 
specifically developed for nanoEHS. In addition, the Horizon 2020 PROSAFE Action has 
recently made publicly available Deliverable Report D1.3, which gathered and 
summarised information on nanoEHS data sources over a variety of nanoEHS projects. 
(https://tinyurl.com/Prosafe-D3-1). 
 
 
 
 
 
 
 

https://euon.echa.europa.eu/
https://tinyurl.com/Prosafe-D3-1
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Table 7: Overview on selected nano-specific databases. 
 
Name Link EU/ US Freely 

accessible/ 
Registration 

Description 

eNanoMapper http://search.data.enanomapper.net/  EU Partly Contains primary research data 
from various finished nanoEHS 
projects and from literature 

NanoHub https://nanohub.org/  
 

US Freely 
accessible 

Contains community-contributed 
resources and geared toward 
educational applications, 
professional networking, and 
interactive simulation tools for 
nanotechnology. 

DaNa http://www.nanopartikel.info/  EU Freely 
accessible 

Contains information for the 
general public and for researchers, 
contains a collection of SOPs 

OCHEM http://ochem.eu EU Freely 
accessible 

Contains experimental data on nano 
and non-nano materials, supports 
generation of new models based on 
plenty descriptors of various kind, 
supports model evaluation, and 
allows to store models either 
privately or publicly. 

NECID http://www.necid.eu  EU 
 

 Focus on exposure data 

NanoDatabank http://nanoinfo.org/nanodatabank  US Accessible 
with 
registration 

Contains over 1000 uploaded 
investigations from CEIN as well as 
external investigators. Includes data 
on NM toxicity, characterisation, in 
addition to fate and transport. 

NM-Biological 
Interactions 
Knowledgebase 

http://nbi.oregonstate.edu/ US Freely 
accessible 

Contains over 200 in vivo NM 
toxicological assessments in 
embryonic zebrafish model. 
Includes NM characterisation, 
mortality, and 21 endpoints such as 
morphological malformations, 
behavioral abnormalities and 
disrupted physiological function. 

NanoMiner http://compbio.uta.fi/estools/nanomm
une/index.php/  

EU Freely 
accessible 

Contains data on 634 samples 
(including omics data), all 
annotated, preprocessed and 
normalised using standard methods, 
developed within EU FP7 
NANOMMUNE with US 
collaboration 

NanoMILE https://ssl.biomax.de/nanomile/cgi/log
in_bioxm_portal.cgi  

EU Registration 
required 

Contains characterisation data and 
HTS toxicity data for 120 NMs, 
with detailed mechanistic, omics 
and ecotox data for a sub-set. 
Supplemented with literature data 
in places, and used as basis for 
QSAR development 

ModNanoTox  http://www.birmingham.ac.uk/generic
/modnanotox  

EU Freely 
available 

Curated database on ecotox data, 
focused mainly on silver, spanning 
2007-2017. Currently integrating 
into CEINT’s NIKC database and 
already available via eNanoMapper 
database. 

     

http://search.data.enanomapper.net/
https://nanohub.org/
http://www.nanopartikel.info/
http://www.necid.eu/
http://www.necid.eu/
http://nanoinfo.org/nanodatabank
http://nbi.oregonstate.edu/
http://compbio.uta.fi/estools/nanommune/index.php/
http://compbio.uta.fi/estools/nanommune/index.php/
https://ssl.biomax.de/nanomile/cgi/login_bioxm_portal.cgi
https://ssl.biomax.de/nanomile/cgi/login_bioxm_portal.cgi
http://www.birmingham.ac.uk/generic/modnanotox
http://www.birmingham.ac.uk/generic/modnanotox
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11.1 Modelling Projects 
 
The following table gives an overview on selected important modelling projects. 
 
Table 8: Overview on modelling projects. 
 

Name Link EU/ U.S. Finished Short description 
NanoPUZZLES http://nanopuzzles.eu/ EU Yes Modelling properties, 

interactions, toxicity and 
environmental behaviour of 
engineered NMs 

ModENPTox http://fys.kuleuven.be/apps/m
odenptox/ 

EU Yes A generic modelling platform 
to predict the toxicity of metal 
based NMs 

PreNanoTox http://prenanotox.tau.ac.il/  EU Yes Predictive toxicology of 
engineered NMs 

MembraneNano
Part 

http://www.membranenanopar
t.eu/  

EU Yes Multiscale modelling of NM-
membrane and NM-protein 
interactions. 

MODERN http://modern-fp7.biocenit.cat/  EU Yes MODelling the EnviRon-
mental and human health 
effects of NMs 

eNanoMapper http://www.enanomapper.net/ EU Yes eNanoMapper also supported 
modelling, e.g., via web 
application JaqPotQuattro that 
allows building QSAR models 
and using them 

COST TD1204 
MODENA 

http://www.modena-cost.eu/  EU Yes COST action supporting 
networking of modelling 
community and projects 

SmartNanoTox http://www.smartnanotox.eu/ EU Ongoing Bionano interactions models 
and database. AOPs for 
pulmonary exposure, pathway 
modelling, mechanism- aware 
prediction tools 

Nanoinfo http://nanoinfo.org  U.S. Yes, but 
constantly 
updated 

In silico data transformation 
and decision-making tools, 
data processing, hazard 
ranking, exposure modelling, 
risk profiling, and construction 
of nano-SARs, combined with 
educational programs. 
Simulators are also available. 

NANECO http://ochem.eu  NATO Yes Development of QSAR 
models for metallic NMs 

 
 
 
 
 
 

http://nanopuzzles.eu/
http://fys.kuleuven.be/apps/modenptox/
http://fys.kuleuven.be/apps/modenptox/
http://prenanotox.tau.ac.il/
http://www.membranenanopart.eu/
http://www.membranenanopart.eu/
http://modern-fp7.biocenit.cat/
http://www.enanomapper.net/
http://www.modena-cost.eu/
http://www.smartnanotox.eu/
http://nanoinfo.org/
http://ochem.eu/
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11.2 NanoEHS projects generating large-scale datasets 
 
Table 9 gives on overview on other selected important and interesting projects that are 
providing large-scale data sets relevant to nanoEHS, useful for modelling and 
nanoinformatics. 
 
Table 9: Overview on selected interesting projects. 
 

Name Link EU/ U.S. Finished Short description 
MARINA http://www.marina-

fp7.eu/  
EU Yes Developed and validated Risk Management 

Methods for NMs, addressing Materials, 
Exposure, Hazard, and Risk; developed tools 
for each and integrated them into a Risk 
Management Toolbox and Strategy for 
human and environmental health. Database 
with physico-chemical properties; in-vitro, 
in-vivo and eco-tox; omics, exposure. 

NanoMILE http://nanomile.eu-
vri.eu/  

EU Yes Mechanistic understanding of NNs 
interactions with living systems and the 
environment, across their entire life cycle, 
leading to a framework (approach, 
experimental protocols, experimental data, 
QSAR models) for MNMs classification 
according to their biological or 
environmental impacts. 

NanoSolutions http://nanosolutionsfp7.c
om/  

EU Yes Developed a safety classification for NMs 
based on the “biological identity” of NMs, 
and develop programs to predict health 
effects via the “ENM SAFETY 
CLASSIFIER”, transition from descriptive 
to predictive toxicology. Database with 
physico-chemical properties (31 types); bio-
corona protein; in-vitro, in-vivo and eco-tox, 
extensive omics, cross-species exposure; 
translocation. 

SUN http://www.sun-fp7.eu/  EU Yes Developed new methods and tools for 
prediction of longer-term NM exposure, 
effects and risks for humans and 
ecosystems; and create guidance for safer 
production, handling and end-of-life 
treatment of nano-enabled products. A 
database with a variety of nanoEHS data 
(physico-chemical properties; in-vitro, in-
vivo and eco-tox; information on fate, 
release and exposure); Developed a risk 
management Decision Support System for 
practical use by industries and regulators. 

NANoREG http://www.nanoreg.eu/  EU Yes A common European approach to the 
regulatory testing of manufactured NMs, 
Largest EU nanosafety project with large 
dataset (publically available via 
eNanoMapper). 

FutureNano 
Needs 

http://www.futurenanon
eeds.eu/  

  A framework to respond to the regulatory 
needs of future NMs and markets. 

NanoToxClass https://www.nanotoxclas
s.eu  

ERANET Ongoing  Develops Grouping approaches for NMs 
with a focus on NM inhalation, uses various 
in vitro and in vivo models, including multi-
omics approaches (i.e., transcriptomics, 

http://www.marina-fp7.eu/
http://www.marina-fp7.eu/
http://nanomile.eu-vri.eu/
http://nanomile.eu-vri.eu/
http://nanosolutionsfp7.com/
http://nanosolutionsfp7.com/
http://www.sun-fp7.eu/
http://www.nanoreg.eu/
http://www.futurenanoneeds.eu/
http://www.futurenanoneeds.eu/
https://www.nanotoxclass.eu/
https://www.nanotoxclass.eu/
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proteomics, metabolomics, protein corona).  
NanoReg2 https://www.nanoreg2.e

u 
EU Ongoing Develops Grouping Approaches for NMs 

and Safe Innovation Approach (SIA) for 
NM, used and significantly expanded 
eNanoMapper database 

caLIBRAte http://www.nanocalibrat
e.eu/home  

EU Ongoing Performance testing, calibration and 
implementation of a next generation system-
of-systems risk governance framework for 
NMs. 

ACEnano http://www.acenano-
project.eu 

EU Ongoing Development of a holistic analytical 
framework for reproducible NM 
characterisation, embedded in an operational 
ontology (“common language”) and data 
framework to allow identification of causal 
relationships between NMs properties, and 
biological, (eco)toxicological and health 
impacts. 

PATROLS 
 

https://www.patrols-
h2020.eu/  

EU Ongoing Physiologically Anchored Tools for 
Realistic nanOmateriaL hazard aSsessment. 
Establish innovative, next generation hazard 
assessment tools to more accurately predict 
adverse effects caused by long-term 
(chronic), low dose ENM exposure in 
human and environmental systems to 
support regulatory risk decision making. 

GRACIOUS https://www.h2020graci
ous.eu/  

EU Ongoing Grouping, Read-Across and ClassIficatiOn 
framework for regUlatory risk assessment of 
manufactured NMs and Safer design of 
nano-enabled products. It aims to streamline 
the risk assessment process through a highly 
innovative science-based Framework, enable 
practical application of grouping. 

 
 
 
 
  

https://www.nanoreg2.eu/
https://www.nanoreg2.eu/
http://www.nanocalibrate.eu/home
http://www.nanocalibrate.eu/home
http://www.acenano-project.eu/
http://www.acenano-project.eu/
https://www.patrols-h2020.eu/
https://www.patrols-h2020.eu/
https://www.h2020gracious.eu/
https://www.h2020gracious.eu/
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12. Roadmap as Perspectives, Milestones and Pilot 
Projects 
 
Fred Klaessig1, Andrea Haase2, Yoram Cohen3, Vicki Grassian4, Vicki Stone5, Ulla Vogel6, 
Dave Spurgeon7, Claus Svendsen7, Germ Visser8, Andreas Falk9, Andrew Worth10, Dave 
Winkler11, Iseult Lynch12, Marc A. Williams13, Alan Kennedy14, Lisa Strutz15, Elizabeth 
Hahn-Dantona,16 Igor Linkov17 and NIH NanoWG participants 
 
1 Pennsylvania Bio Nano Systems, LLC, USA 
2 German Federal Institute for Risk Assessment, Germany 
3 University of California, USA 
4 University of California San Diego, USA 
5 Herriot Watt University, Edinburgh, UK 
6 National Research Centre for the Working Environment, Copenhagen, Denmark 
7 Centre for Ecology and Hydrology, Wallingford, UK 
8 DSM Science & Technology 
9 BioNanoNet 
10 European Commission, Joint Research Centre, Ispra, Italy  
11 CSIRO, Manufacturing, Australia; La Trobe University, Australia; Monash University, Australia 
12 University of Birmingham 
13 U.S. Army Public Health Center (APHC), Toxicology Directorate, Aberdeen Proving Ground, MD, USA 
14 U.S. Army Engineer Research and Development Center Environmental Laboratory, Vicksburg, MS, USA 
15 APHC, Environmental Health Sciences & Engineering, Aberdeen Proving Ground, MD, USA 
16 Medical Science & Computing, LLC 
17 U.S. Army Engineer Research and Development Center, Concord, MA, USA 
 

12.1 Introduction 
 
The EU-U.S. Nanoinformatics Roadmap 2030 consists of perspectives, milestones and 
pilot projects. The perspectives combine the open issues identified in earlier sections in 
order to highlight opportunities for coordination of efforts, and to elucidate individual 
milestones. The perspectives relate to toxicology (Section 12.2), physico-chemical 
properties (Section 12.3) and modelling (Section 12.4). The milestones described in 
Table 11, re-cast the perspectives into a chronological order, focusing on situations 
where early validation and acceptance by regulatory authorities is reasonable. The 
Proposed Pilot Projects described in Table 12, represent suggestions for initial efforts 
that would bring together various stakeholder communities. 
 
Other sections of the Nanoinformatics 2030 Roadmap describe concepts and 
collaborations that advance the goals outlined in Section 3. However, in suggesting 
milestones and pilot studies, we are placing some boundaries on expectations. 
Informatics and ontologies require a disciplined attention on definitions, controlled 
vocabularies, well-defined data sets and metadata. Consequently, we wish to be explicit 
regarding the steps taken in crafting the milestones and pilot projects of the 
NanoInformatics Roadmap. This introduction provides context; the three “perspectives” 
describe challenges facing the scientific community in achieving the stated goals of the 
Roadmap; and the subsequent “commentary” connects this work to related EU 
Roadmaps (available via www.nanosafetycluster.eu). The resulting milestones and 
suggested pilot studies are provided below as tables. 

http://www.nanosafetycluster.eu/
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Milestones are listed according to short-, intermediate- and long-term horizons that are 
aligned to the scientific fields that will contribute most to that specific topic. The short-
term objectives establish a base set of activities; the intermediate-term objectives 
measure progress; and the long-term goals anticipate regulatory requirements for the 
resulting tools to be accepted by risk assessment professionals. 
 
The overarching strategy involves a progression of predictive computational models, 
each one specific to a topic area (i.e., property, species, biological response), or to a stage 
in the life cycle of a given NM. Each one is expected to have utility in risk assessment. A 
modular approach allows for flexibility in using the available data, in judging model 
accuracy and in addressing regulatory requirements. Two visualisations are used to 
offset the flexibility around models. The Particle Description can be used to align 
physicochemical properties to specific particle regions (e.g., core, shell, hydration layer, 
etc.) and composition. The Particle Journey can be used to align models to stages in the 
life cycle of a given NM or to laboratory tests (e.g., membrane/biological barrier contact, 
internalisation, biodistribution/subcellular localisation, site of action, mode of action, 
transformation, and clearance mechanisms, etc.). 
 
The milestones in this roadmap address three recognised challenges facing 
nanoinformatics and predictive computational models: (1) limited data; (2) limited data 
access due to proprietary, intellectual property or legal restrictions combined with the 
lack of long-term support for a nano-data repository and data curation with acceptable 
recall and precision to retrieve data from appropriate repositories; and (3) regulatory 
requirements for harmonised test methods that are conducted according to GLP 
standards. In response, the milestones seek to: (a) encourage data generation through 
collaboration, the use of surrogate test methods, and newer screening techniques, while 
(b) recognising that progress will be uneven and (c) suggest that a read-across approach 
and related data-filling techniques (e.g., QSARs, trend analyses, and design of 
experiments) represent tools for introducing the fruits of this work into the regulatory 
process.  
 
The reader is reminded that the background to the individual milestones and their 
sources were provided in Section 4, e.g., the Nanoinformatics 2020 Roadmap [4, 5]; the 
COST sponsored workshop in Maastricht [6, 7]; and a 2014 NSF-sponsored workshop 
[8]. These earlier resources were updated using concepts as examined in Sections 5-8 
and now include a more explicit identification of the likely steps that are important to 
the processes of regulatory validation and acceptance. 

12.2 Perspectives for Toxicological Milestones 
 
The Nanoinformatics 2030 Roadmap responds to two key aspects of the toxicological 
and related biological sciences (i.e., ecotoxicology, medicine, physiology and 
pharmacology, and systems biology). Firstly, there is a hypothesis-driven approach to 
research and new knowledge development, which is conducted against an infrastructure 
backdrop of bioinformatics, assay development, alternative test strategies, Adverse 
Outcome Pathways (AOPs), and the introduction of new capabilities with ‘omics-based 
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technologies, among others. Secondly, there is the manner by which toxicology is 
practiced in a regulatory contextual framework; i.e., an insistence on harmonised test 
methods conducted according to GLP. This insistence is substantive, and reflects societal 
considerations of public health, statutory language and legal precedent that are 
embodied in regulatory agency practices and procedures. 
 
Distinctions between hypothesis-driven research and regulatory practice might be 
recognised by many in the toxicological sciences. However, researchers in the physical 
and computational sciences are generally unaware of these distinctions and there is an 
under-appreciation of the relative importance of basic and applied research by 
regulators. Accordingly, the “Roadmap” has attempted to align computational models 
with the stages found in a material’s life cycle (shown below in Table 10). The middle 
column of Table 10 lists the life cycle stages through to the point of sampling where 
laboratory test protocols prevail (i.e., abiotic, mesocosm, in vitro or in vivo); the left-hand 
column aligns computational models to those stages and laboratory tests from material 
design to dispersal to fate and effect; and the right-hand column identifies the likely 
responsible end-user of the model’s estimates (i.e., manufacturer, processor or 
formulator) or the associated risk assessment concept being considered by a regulatory 
agency. 
 
Table 10: Overview of models relative to Life Cycle Assessment stages. 
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New Approach Methodologies (NAM) and Adverse Outcome Pathways (AOPs) are 
examples of novel, hypothesis-driven research. Currently, they are not specifically 
implemented and routinely accepted/used by regulators, as they have not yet 
undergone validation as outlined by the OECD [245]. In general, regulatory expectations 
of reliability and relevance, such as those expressed in the Klimisch score [246], favour 
established assays (e.g., from the U.S. EPA or OECD TG) that are known to be conducted 
in accordance with GLP.  
 
Risk assessment professionals may estimate a property or biological activity when 
chemical substances are grouped with tools that might include QSAR/QSPRs, trend 
analysis or read-across with inherent default rules for filling those data gaps by 
providing information on the property or biological activity of a chemical or a class of 
structurally related chemicals. Read-across can also be used for estimating effects across 
biological species. 
 
Data-filling techniques (e.g., QSARs, trend analyses and read-across) have been 
considered for NMs [247, 248] and offer potential approaches for developing and 
introducing new methodologies (e.g., NAM, AOP and computational methods) to the 
regulatory process. Procedures for grouping NMs, however, remain to be established. 
Similarity in the mechanism of biological response (AOPs, toxicokinetics, etc.) will likely 
be a significant consideration. Many of the models in Table 10 are reliant on progress in 
understanding of particle interactions, such as cellular uptake, to supplement the more 
established interpretations of pharmacological or toxicological kinetics based on 
molecular interactions, e.g., PB/PK models incorporating results of absorption, 
distribution, metabolism and excretion testing. 
 
The criteria that regulators will deem necessary for model acceptance will become 
increasingly visible with future progress, as described in guidance documents of FDA 
[249] for PB/PK models, OECD [TG 417, 2010] and US EPA (61 FR 56274) [250] for 
toxicokinetics, and the ICH S3A for assessing systemic exposures [251]. The milestones 
alert the reader to such matters through phrases like ‘credible AOPs’, ‘validation 
requirements’, and ‘regulatory endorsement’ but essentially fail to provide guidance on 
how to achieve them. 

12.3 Perspectives for Physico-chemical Milestones 
 
While several nanoEHS disciplines describe chemical substances using simple chemical 
formulae for molecular identities, e.g., TiO2, these fields with respect to physico-chemical 
properties. The Chemical Abstract Services (CAS) does not index TiO2 information 
according to volume or shape. Yet, in early 2017, the US EPA with ‘nanoscale form’ and 
ECHA with ‘nanoform’ decided to differentiate particles with identical core compositions 
using size, shape and surface chemistry/coating distinctions [252, 253]. 
 
In materials science, a phase of uniform composition that is in equilibrium with other 
phases through the phase rule defines a molecular identity, which was one justification 
for not considering size (volume) when indexing information. However, the physico-
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chemical properties often considered meaningful to toxicological studies are non-
equilibrium functions, perhaps steady-state or those emphasising kinetic pathways, 
which reflect the non-equilibrium nature of NMs. Using the US EPA ruling [252] as an 
example: dissolution is kinetics (solubility is equilibrium); zeta potential reflects 
coatings and adsorbed species (not the core composition); dispersion stability may 
involve steric or electrostatic factors; and surface reactivity is rephrased to be biology; 
i.e., “...the degree to which the nanoscale material will react with biological systems.” 
Surface reactivity essentially encompasses the nano-bio interface. 
 
There are complicating factors regarding molecular identity. For organic molecules, the 
molecular entity in the solid and in solution is essentially the same covalently bonded 
molecule. For inorganic materials, metals or metal oxides, the molecular identity in the 
solid may encompass ionic or metallic bonding and may not be the species found in 
solution. The experience gained with QSAR/QSPRs for drug discovery may not be 
translatable to metal oxide toxicity. The second complicating factor is the dual nature of 
the particle [254]: acting as a particle for dispersal, biodistribution, and cell entry and 
acting as a chemical reservoir for some modes of action (dissolution, drug release, 
biopersistence). These are factors that must be evaluated within the context of the NM’s 
life cycle assessment. 
 
Returning to equilibrium and steady state distinctions, melting is both a phase transition 
and a form of dissolution. Melting point depression can be estimated using the Gibbs-
Thompson equation, which combines equilibrium thermodynamic concepts with case-
specific solid-liquid interface energies. Functional assays [255] involve transport 
properties, which may be constrained by case-specific macroscopic conditions (flow 
rate) or surface kinetics. These case-specific considerations will influence the selection 
of descriptors in models. 
 
To illustrate the potential for distinguishing among identities, Figure 17 is a particle 
visualisation, a physical model, utilising terms defined by ISO TC 229. One 
recommendation is to assign a physico-chemical property to the localised region and 
composition likely to govern that phenomenon, e.g., zeta potential with surface layer and 
shape with particle substrate. The particle description highlights possible sources for a 
changing nanolayer composition across the life cycle (Table 10). 
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Figure 17: NM Physical Model. 
 
In the milestones, coatings also include surface layers or protein or other acquired 
biomolecule coronas that were not present during particle manufacturing. The first 
milestone supports a review of data collected from the OECD WPMN sponsorship 
programs such as NANoREG to establish a base case. 
 
One pilot project focuses on dissolution, a common theme to several of the nanoEHS 
disciplines, aiming to clarify issues, such as ionic solids not retaining their nominal 
molecular identity upon dissolution. There is a large body of dissolution data and 
solubility modelling that may be applicable to nanoscale materials, but may be indexed 
under other metadata or ontology rules than those used in nanoEHS. Collecting this, and 
indexing it with nanoEHS terms may unlock additional large datasets for use in model 
development.  

12.4 Perspectives for Modelling Milestones 
 
There is a great diversity in model types, including computational ones. The regulatory 
framework is itself a model, as it is a simplified representation of a much more complex 
system. It is a form of decision model that utilises numerical values for selected 
variables (production volumes, intended uses, human health and ecotoxicity endpoints). 
There are variants both broader and narrower [133, 256] that extend beyond statutory 
requirements. In populating decision models, one may use laboratory generated test 
results or the numerical estimates from computational models. These in turn can be 
based on quantum mechanical calculations of molecular bonding or other descriptors 
examined in Sections 6 and 7. 
 
There are models that utilise thermodynamic concepts, such as dynamic energy budget 
or Ostwald-Freundlich dissolution [257, 258]. For the most part, dispersal models of 
particle-as-colloid accept the applicability of classical DLVO theory. As discussed in 



EU US Roadmap Nanoinformatics    

 
 

100 

Section 12.3, size-dependent properties imply that the NM is not at equilibrium, but 
rather in a steady state or a kinetically hindered state. This raises significant concerns 
when a computational estimate of dissolution is incorporated into a decision model or 
physiologically-based pharmacokinetic (PB/PK) ADME (absorption, distribution, 
metabolism, and excretion) model without considering kinetically hindered dissolution 
mechanisms [133, 249, 258]. 
 
There is also uncertainty regarding the meaning of ‘structure’ when proposing a 
computational model for QSPR. Is it the structure of a molecule (bond lengths, angles, 
functional groups) or is it the particle’s external shape influencing those molecular 
concepts or is it the particle’s internal arrangement of surface, coating, and surface 
layer? The same questions about the meaning of ‘structure’ arise with QSARs. 
 
All models, frameworks and theories are prone to variants of Type III errors, where the 
question posed extends beyond the model’s domain, yet the model returns a result. 
Basing computational models solely on in vitro assay data to predict in vivo outcomes 
raises the prospect of such errors, as does using QSPR or other models to predict 
properties outside of the domain of the ‘training’ dataset. Models, like experiments, can 
be surprisingly robust and can fail as well [259]. 
 
Model validation, which is the subject of an OECD guidance document regarding QSAR 
models [136], raises two related issues. Firstly, the QSAR model must have a “defined 
domain of applicability” and secondly, should have a “mechanistic interpretation (if 
possible)” that ties the NM descriptors to the biological endpoint being predicted. There 
is also a guidance document on computerised systems, including databases, data 
approval and periodic review that may be applicable to the data sets used to validate a 
model [260]. 
 
It is not yet known how these guidance documents will be applied to computational 
models or the underlying datasets. This is one reason for favouring a modularised 
approach, where each module can be tested against data specific to a target endpoint, 
thereby enhancing its acceptability in data-filling. Descriptors might be tested using 
broad datasets extending beyond nanoscale materials, but once accepted then be re-
calibrated to a narrower nanoscale material dataset for a regulatory submission. 

12.5 Commentary on related EU activities  
 
The European Nano Safety Cluster has published two related documents: the 2016 
“Closer to the Market Roadmap” (CTTM) and the 2017 “Regulatory Research Roadmap” 
(RRR) [261, 262]. Additionally, the Joint Research Centre has published a final report for 
the NanoComput project [263]. Some commentary is appropriate as there are significant 
overlaps, but with different focal points. 
 
The CTTM emphasis is on assuring workers and consumers that there are procedures, 
policies and programs in place to reduce uncertainties surrounding nano-enabled 
products. Integral to the CTTM program is providing “solid operational knowledge (high 
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level of scientific expertise and robust accumulated datasets)” (Recommendations in 
[261]). 
 
A significant overlap occurs in the discussions of two bottlenecks ([260], page 30) that 
identifies the responsible parties for resolving hurdles (basic scientific knowledge, 
research to support regulation and nanotechnology market/CTTM). For “uncertainties 
in risk assessment and in regulation,” the recommendation for regulatory research in 
the CTTM is to improve and stabilise regulation and to communicate uncertainties. 
Regarding the “lack of validated methods (toxicological and analytical) for nanosafety 
assessment,” the CTTM recommends developing scientific knowledge via equipment, 
harmonisation, round robin testing, validation studies and general guidelines on how to 
standardise nano-specific protocols. 
 
The RRR [262] has a fully integrated risk analysis framework as its objective, while the 
Nanoinformatics Roadmap leverages databases and metadata considerations to expand 
the use of computational models. In both cases, validation is critical to successful use by 
regulators. Both the RRR and Nanoinformatics Roadmap attempt to bring awareness of 
regulatory requirements forward in time. For the RRR, this is expressed as: “It should 
also be noted that while the hexagon diagrams indicate prioritisation, issues situated on 
the right-hand side (long term and distant future priorities) of each prioritisation 
diagram need to be considered at an early stage to ensure that any short-term activity 
generates outputs that will be useful for developing longer-term priorities.” The RRR 
connects high quality data to validated methods, while the Nanoinformatics Roadmap 
ties quality to the metadata found in either ISA-TAB-nano or ISA-TAB-JSON formats and 
in the ontology (NPO or eNanoMapper).  
 
The EC’s Joint Research Centre has issued a report [263] reviewing current 
computational models that may be useful to regulatory authorities. It is very 
comprehensive and shares many concepts with this Roadmap, but with a different 
emphasis. The JRC’s advisory role in the European Commission leads it to specific 
recommendations regarding public dissemination, filling knowledge gaps with concrete 
regulatory applications in mind and developing a one stop hub for databases and 
models. The Roadmap offers milestones directed at a wider stakeholder group whose 
activities may contribute useful data for modelling, but leaving applicability to 
regulatory frameworks as a second validation step. 
 
In the Table listing milestones, the scientific fields most involved in achieving a specific 
goal along the roadmap are indicated, aligning roughly with the CTTM approach. 
Additionally, the same colour code used with the RRR’s hexagons has been added to the 
Milestone Table to identify those activities that are predominantly data generation, 
method development and regulatory framework milestones. Relative to the JRC report, 
the milestones place greater emphasis on read-across exercises as a means to gain 
feedback on model and dataset acceptability. 
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Table 11: Roadmap Milestones. 
 

Year Milestone Tox P-Chem Models 
Near 
�� 

1). Document benchmark NMs: their biological and physico-
chemical data, coatings, manufacturing technique(s), 
production volumes; primary use patterns. 

X X X 

Near 
�� 

2). Develop functional assays and NM-descriptors to model 
environmental changes: confirm where possible with in situ 
instrumentation and relate to pristine NMs, their dissolution, 
dispersal, homo- and hetero-aggregation 

 X X 

Near 
�� 

3). Develop high throughput methods for measuring NM 
interactions with plasma proteins (protein coronas) for PBPK 
modelling of NM distribution in the body. 

X   

Near 
�� 

4). Propose data sharing/file transfer, ontology, terminology 
and data quality and completeness criteria for interoperable 
nanoEHS databases and online modelling services and promote 
appropriate training and data quality assurance planning 

X X X 

Mid 
�� 

5). Develop surrogate and fast screen assays suitable for tiered 
testing that align with credible AOPs in order to evaluate NM 
descriptors for computational model validation 

X   

Mid 
�� 

6). Consensus on validated particle descriptors useful for 
physico-chemical properties and for environmental changes to 
serve as a basis for modelling biological endpoints 

  X 

Mid 
�� 

7). Identify NP fingerprints (biomarkers, NP property 
descriptors, functional assays) to allow for NP grouping and 
with selected OECD TG’s in vitro endpoints 

X X  

Mid 
�� 

8). Clarify computer model validation requirements for 
regulatory purposes (particle descriptors including coatings; 
chemical grouping) 

X  X 

Mid 
�� 

9). Establish high throughput in vitro protocols for generating 
large datasets useful for validating model descriptors  

X   

Far 10). Complete a suite of validated models for environmental 
fate and effect that are useful and endorsed by regulators for 
QSAR, trend analysis and read-across purposes 

  X 

Far 11). Complete a suite of PBPK models that include ADME and 
NP-protein corona factors 

  X 

Far 
�� 

12). Develop appropriate assays for identifying the AOP profile 
for new NP classes and the minimum characterisation data set 
for classifying a new NM to a class 

X   

Far 
�� 

13). Regulatory endorsement of in vitro predictive models for 
NMs 

X  X 

 
  ��  = Data Generation; ��  = Method; and �� = Regulatory 
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Table 12: Suggested Initial Pilot Projects. 
 

 
 
 
 
 
  

Pilot Projects 
Data set availability (schedule and 
access criteria): 
● caNano: accessible for non-

confidential data 
● NM Registry: accessible; limited 

nanoEHS data 
● NanoExPert: limited ecotoxicology 

database with hazard visualisations 
and calculations; accessible: 
(https://nanoexpert.usace.army.mil/
#/Pages/ToolSelectionPage.xaml) 

● UC-CEIN (nanoinfo.org) and CEINT: 
have requirements 

● NANoREG: access in 2017  
● OECD Working Party access awaiting 

clearances 
● Identify other database resources and 

access criteria 
● Data management plans for academic 

institutions 
● Open Science end-point vision 

Informatics Infrastructure: 
● Instances of Characterisation standards 

at ASTM 
● Extensible particle ontology standard at 

ASTM 
● ISA-TAB-nano upgrade led by Duke and 

OSU 
● Incorporation of UDS considerations 

into standards 
● Revisit error expression, data templates, 

metadata selection with existing 
datasets and templates 

● Establish a coordination site  

Dissolution: 
● Clarify industry interest and identify 

participants 
● Pursue collaboration with Materials 

Genome Initiative and European 
Modelling Council 

● Pursue collaboration with 
Pharmaceutical colleagues regarding 
drug release experience 

● Clarify regulators requirements for 
use in read-across 

● Examine NMs aging and 
transformation implications 

Informatics literacy: 
● Survey Ph.D. students and post-docs on 

informatics acceptance 
● Survey P.I.s on informatics acceptance; 
● Incorporate help desk and P.I. proposals 

from NanoCommons and Oregon State 
University 

http://nanoinfo.org/
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Appendix 1: Summary of Database Projects (2010-
2017) 
 
The NSC Working Group on Databases together with the caLIBRAte project, distributed 
a database survey in December 2016. Thirty-two responses were received, from the 
following projects: Cerasafe, DaNA, eNanoMapper, MARINA, NanoFate, NanoImpactNet, 
NanoMILE, NanoPUZZLES, NANoREG, Nanosolutions, Nanovalid, NECID, S2NANO, 
Sanowork, Scaffold, Serenade, SIRENA, SUN, TINE, UK NanoRegister, and VieilleNanos. 
According to the responses, the majority of types of data and information on NMs 
collected by the responding projects (multiple answers possible) were on physico-
chemical characterisation (24), in vitro toxicity (17), in vivo toxicity (17), ecotoxicology 
(14), human exposure (12), or environmental release/fate (10). Other questions of the 
survey addressed the main objective(s) of the database, database design and 
implementation, database availability/accessibility, the use of semantics technology 
methods, the data collection and curation, the copyright and licensing aspects. The 
results of the survey will be published on the EU NanoSafety Cluster website. Further 
details of selected projects are given below. 

A1.1 eNanoMapper  
The EU FP7 project eNanoMapper ran from February 2014 to February 2017 and 
developed a computational framework for NMs toxicological data, which is based on 
open standards, open source, common languages, and an interoperable design, enabling 
a more effective and integrated approach to risk assessment. eNanoMapper has created 
a modular, extensible infrastructure for transparent data sharing, data analysis, and the 
creation of computational toxicology models, which aims to support data management 
in the area of nanoEHS and to enable an integrated approach for the risk assessment of 
NMs. To achieve these, eNanoMapper developed an ontology, a data infrastructure and 
modelling tools with applicability in risk assessment of NMs. The ontology includes 
common vocabulary terms used in nanosafety research. The database includes 
functionalities for data protection, data sharing, data quality assurance, search 
interfaces for different needs and usages, comparability and cross-talk with other 
databases (https://search.data.enanomapper.net). A collection of descriptors, 
computational toxicology models and modelling tools were developed, enabling the use 
and integration of nanosafety data from various sources [A1-A3], including web tools: 
Jaqpot (http://www.jaqpot.org, [A4]) which allows online Modelling (building and 
validating models), Read-across, Interlaboratory comparison and Experimental Design, 
while Nano-lazar, available at https://nano-lazar.in-silico.ch/predict, offers online Read-
across toxicity predictions. The project also provided a rich library of information and 
documentation (tutorials, webinars, reports and publications) to support and guide the 
users. In addition, a collection of modelling tools developed within FP7 nano modelling 
projects was created: http://www.enanomapper.net/nsc-modelling-tools. 
 

https://search.data.enanomapper.net/
http://www.jaqpot.org/
http://www.enanomapper.net/nsc-modelling-tools
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A1.2 NanoDatabank 
NanoDatabank, developed by the Nanoinformatics group of the UCLA Center for 
Environmental Implications of Nanotechnology (CEIN), is a centralised and integrated 
web-based database management system for NMs. NanoDatabank, which is an integral 
component of a nanoinformatics platform (nanoinfo.org), was developed with a 
framework for classification and storage of various structured as well as unstructured 
NMs relevant data types. NanoDatabank provides storage and sharing of data using 
language independent and easy to understand collection of key-value pairs in the form 
of JavaScript object notation (JSON) based objects. The classification structure of 
NanoDatabank are consistent with existing ontologies and hierarchy trees such as the 
Nano Particle Ontology (NPO) [A5], eNanoMapper [A6] as well as with data format 
provided by Nanomaterial standards such as ISA-TAB-NANO [A7]. 
 
NanoDatabank currently contains data sets on more than 1000 NM types, 900 
investigations regarding NM toxicity (including metal oxides, quantum dots, CNTs and 
more) and 150 investigations regarding F&T and ENM characterisation. NanoDatabank 
supports nanoinformatics tools/simulators by providing (a) accessibility to data sets by 
various simulators and data processing tools, (b) ability to upload raw data and perform 
various data processing functions, and (c) an intelligent system to allow advanced 
querying of records within the system. NanoDatabank stores investigation data as part 
of studies which contain one or more investigations. Each investigation is classified via a 
dynamic system (i.e., classification trees for (i) NMs and (ii) Investigations embedding 
classification sub-trees for studies and associated data files). Given the above, Meta Data 
files are automatically generated as well as dynamic summary reports of NanoDatabank 
uploaded investigations. Studies and investigations are linked to specific NMs in the 
NMs NanoCatalog. 

A1.3 NECID 
Under the leadership of IFA (Institute for Occupational Safety and Health of the German 
Social Accident Insurance) and TNO (TNO – innovation for life) a working group of 
PEROSH (Partnership for European Research in Occupational Safety and Health) 
institutes developed and tested a database software called NECID (Nano Exposure and 
Contextual Information Database). The software supports the user to collect and store 
data of exposure measurements of NOAA (Nano-Objects and their Agglomerates and 
Aggregates). In addition to measurement data of individual instruments the collection 
and documentation of work conditions, or so called “contextual information,” is a focus 
of this project. 
 
The NECID software includes a NM specific exposure database, as well as features for 
data sharing and data assessment. The software runs locally on a computer but also 
offers a web-based central database for the exchange of information. A key factor for the 
project is the harmonisation of “nano exposure measurements” and their 
documentation. Therefor NECID uses, as far as possible, a harmonised ontology to 
enable links to other databases. During the construction of NECID, cooperation and 
exchange of information to other projects like NANoREG, MARINA, caLIBRAte, 
GUIDEnano were important parts of the work. 
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After an intensive testing phase within the project a software license for NECID is 
available to every organisation dealing with the challenge of handling NOAA or the risk 
assessment of these tasks. At the moment the license is free of charge. For further 
information please contact NECID@DGUV.de or visit the webpage WWW.NECID.eu. 

A1.4 SERENADE 
CEREGE-Labex SERENADE is the primary contact in Europe for the US database efforts 
led by CEINT– Duke University with ongoing effort on data management, curation and 
with the US-nanoinformatics program as to determine a strategic plan for data 
standardisation, templates and guidance documents for data harmonisation between 
Europe and USA. Discussions were also active during the ProSafe –OECD conference in 
Paris (end of 2016) to link EU and US databases (interoperability, ontology, data 
exchange formats). The CEINT group works in close collaboration with the EU 
Nanosafety Cluster Database Group and the EU-US Database CORs (Community of 
Research) on templates harmonisation and especially on the NanoReg templates and 
format. All partners to share expertise for products stability assessment (simulation of 
products use), environmental fate study, ecotoxicology, end of life with the ProSAfe 
project, and develop common set-up protocols in order to compare data and implement 
exposure models. 

A1.5 GuideNano 
A web-based Exposure Scenario Library has been developed within the GUIDENANO 
project to read-across the exposure scenarios. The library includes contextual 
information (NMs properties, task description, exposure controls) and measurement 
data of 200 occupational exposure scenarios covering a wide range of NMs (CNT, CNF, 
SiO2, ZnO, Ag etc.). The library can be searched by NM name, life-cycle, source domain, 
contributing exposure scenario. The ES Library is hosted online and managed by IOM 
and available using the link: http://guidenano.iom-world.co.uk/. GuideNano partners 
continue to work with eNanoMapper and other members of NSC Working Group to map 
the ES Library variables with those already available in the eNanoMapper database and 
to add new terms if necessary with the aim of constructing an exposure ontology and 
ultimately to make all the exposure data available via the database developed in 
eNanoMapper. 

A1.6 SUN 
The SUN project has successfully accomplished the design, implementation and 
population of a web-based data repository, a searchable operational project database to 
store and maintain the data generated by the project. An extensive exercise was carried 
out with SUN project partners to develop data collection templates, procurement, 
completeness, quality-checked, collation and storage of the scientific project data into a 
flexible and user-friendly operational database. The implemented database provides 
facilities to search, query and retrieve selected project data-sets. We anticipated sharing 
and uploading the SUN data to an instance of the “final” eNanoMapper database early on 
in the project however, data sharing permissions, embargos etc. needs to be formalised 
with SUN project partners. To advance this, SUN partners are currently involved in 

http://guidenano.iom-world.co.uk/
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further related developments, having been contacted by the NANOREG2 and CaLIBRAte 
projects, aiming to supply them with final SUN data.  

A1.7 MARINA 
The MARINA project addresses four themes in the Risk Assessment and Management of 
NMs: Materials, Exposure, Hazard, and Risk. It developed referential tools from each of 
these themes and integrated them into a Risk Management Toolbox and Strategy for 
both human and environmental health. The tools were also demonstrated by means of 
case studies. The fundamental achievements of MARINA are: (i) A well tested set of 
reference NMs with thoroughly validated referential characterisation methods. (ii) The 
methods to further understand the properties, interaction, exposure, and fate of ENM in 
relation to human health and the quality of the environment. (iii) The harmonised, and 
standardised reference methods for hazard assessment for both human and 
environmental health and an integrated/intelligent testing strategy. (iv) The risk 
assessment tools by combining elements of (i), (ii) and (iii); and strategies for 
monitoring ENM exposure for human health and the environment (including accidental 
massive release; e.g., explosion or environmental spillage). (v) The MARINA database of 
experimental results to be shared with the EU Nanosafety Cluster and other ongoing or 
future projects. (vi) Over 80 scientific papers published in peer-reviewed-journals. 

A1.8 NANOSOLUTIONS 
The main innovation of the NANOSOLUTIONS project has been the development of the 
ENM Safety Classifier. This novel hazard profiling principle will help in understanding 
and defining the toxic potential of different types of ENM. It can be used by the ENM 
industry as well as the regulatory community to manage, reduce ENM-associated 
uncertainties, and bring clarity to the current debate, since it enables classifying ENM 
into different hazard categories. During the course of the project, HTS platforms for 
rapid screening of ENMs, based on robust and validated in vitro assays, have also been 
developed and optimised for ENMs. These platforms can be used to implement new 
assays based on the biomarkers identified by the Safety Classifier. The data gathered in 
the project has contributed to the life cycle impact evaluation of ENM-based products, 
and will ultimately clarify their global environmental impact. Validation of the Safety 
Classifier has been carried out with industrially relevant materials. NANOSOLUTIONS 
will make its data available to other qualified parties and this open access to high-
quality data on the material characteristics of various classes of ENM and the relevant 
biological outcomes across several species, including healthy and susceptible 
individuals, will serve as a valuable resource for future ENM safety prediction and 
classification. 

A1.9 NanoMILE 
Project NanoMILE was completed in February 2017. Within NanoMILE, several 
computational methodologies, including semi-empirical quantum mechanical (QM) 
treatment of MNMs crystals, were applied for the estimation of metal and metal oxide 
MNMs properties to identify specific physicochemical features that may be used as 
“MNM fingerprints” and novel nano-descriptors. The proposed computational scheme 
involved the use of various approaches, such as semi-empirical QM calculations, to 
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calculate a range of MNM physicochemical properties. Initially, semi-empirical 
(PM6/PM7) QM calculations were performed on a set of 12 MNMs with varying sizes to 
monitor the evolution of properties and to compare them with the experimentally 
measured properties from their synthesised counterparts. However, in order to 
adequately compare our computed results with experimental findings, there is a need to 
consider larger MNM clusters than those treated with traditional semi-empirical 
approaches based on the gradual replication of the crystal cell unit. Unfortunately, such 
calculations cannot be performed for systems that usually exceed 500-600 atoms due to 
software and machine memory limitations [A8]. To overcome this obstacle, modified 
PM6/ PM7 calculations were performed for selected MNM systems; by doing so, it was 
possible to obtain MNM properties for systems up to 4000 atoms (approximately 4 nm). 
 
Within NanoMILE FP7 project, a well-organised dataset of NMs has been created and 
was analyzed by in silico methods, including the cellular uptake of 109 NMs in pancreatic 
cancer cells (PaCa2). A validated QNAR model for the prediction of the cellular uptake in 
pancreatic cancer cells based on this dataset was developed according to OECD 
principles and then released online through Enalos Cloud platform 
(http://enalos.insilicotox.com/QNAR_PaCa2/). This dedicated web service was 
developed to make the model available to anyone interested in acquiring knowledge on 
potential effects of NMs in a decision-making framework. In an effort to highlight the 
usefulness of the web service, the entire PubChem database was exploited to select 
surface modifiers and propose a prioritised list of novel surface modifiers [A9]. 

A1.10 NanoInformatics Knowledge Commons (NIKC) 
The NanoInformatics Knowledge Commons (NIKC) Database was designed by the 
Center for Environmental Implications of NanoTechnology (CEINT) to gather 
engineered NM exposure and toxicity data into an organisational structure permitting 
readily accessible data for broader scientific inquiry. The NIKC consists of a database 
(DB) and associated applications for data entry and data analysis; the DB contains 
CEINT data as well as data extracted from published literature, and is accessible to 
CEINT members as well as NIKC collaborator groups in the US and abroad. The NIKC is 
an important component in realising the goals of CEINT, which include: elucidating the 
general principles that determine NM behaviour in the environment; identifying data 
and metadata necessary to support forecast of exposure potential, bioaccumulation, and 
bioactivity; and identifying key functional assays [A10] that are predictive of 
measurements of interest. 
 
The NIKC supports development of analytical tools such as the Nano Product Hazard 
and Exposure Analytical Tool (NanoPHEAT), a custom-built app designed to graphically 
indicate exposure risk outcomes from products incorporating engineered NMs. CEINT 
has also adopted management of the community-driven ISA-TAB-Nano project [A7], 
which establishes consistent file-sharing formats for NM data to enable integration of 
information even in advance of formally established standard(s) processes. ISA-TAB-
Nano was developed by the National Cancer Informatics Program’s Nanotechnology 
Working Group (NCIP NanoWG) and has been adopted and adapted by a number of 
projects including the EU-wide NANoREG project. CEINT is leading the community-
based effort to expand the standardised protocol templates used to develop consistent 

http://enalos.insilicotox.com/QNAR_PaCa2/
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and comparable data, with a particular focus on including critical elements of NM 
datasets identified via CEINT’s work. These include: transformation and exposure 
endpoints, inclusion of media parameters within the primary dataset that describe NM 
characterisations, and functional assay measurements used to predict (exposure and 
hazard) outcomes of interest. 

A1.11 QsarDB  
QsarDB has been developed over the course of the past decade within several EU funded 
and national (in Estonia) research initiatives (see www.qsardb.org). It is a general 
repository solution for organising, storing, preserving and using QSAR models. It is also 
designed for accommodating nano-structures and nano-materials. The storage of QSAR 
models and related data is a complicated issue and available storage solutions have been 
reviewed recently [A11]. QsarDB is open and gives freedom to develop model to the 
developer and allows preserving and efficient reusing of models. What is equally 
important, it gives an easy access to QSAR models to potential users, providing 
transparent view to the constituents of the model and allows independent verification. 
QsarDB consists of several components (e.g., data format, repository and tools). Qsar 
DataBank data format [A12] is a format for representing QSAR model information (data 
and models) in systematic and machine-readable way. Qsar DataBank data format is 
generic and has been also used for Quantitative nano-Structure-Activity Relationships 
[see example collection of models http://hdl.handle.net/10967/120]. The format is 
extendable, for example to include further developments for models with 
nanostructures and nanoparticles. The archives in Qsar DataBank data format can be 
freely deposited to the QsarDB smart repository [13]. The QsarDB smart repository is a 
practical resource and tool that enables research groups, project teams and institutions 
to share, present and use Quantitative Structure-Activity Relationships data and models. 
At the moment, the repository includes over 400 (Q)SAR models, is expanding and 
developed further. 

A1.12 GRACIOUS  
The newly funded GRACIOUS H2020 project will continue the efforts of the above 
projects to establish a data curation system, which will be developed based on the 
eNanoMapper database and on elements and templates from other relevant nanosafety 
data inventories such as NANoREG, NanoReg2, DANA 2.0, SUN, MARINA and NanoETox 
to allow both the integration of newer data and the use of raw and aggregated data for 
regulatory risk assessment and Stage-Gate innovation decision making. This data 
curation system will be designed to allow seamless integration with a variety of 
modelling tools (ranging from simple rules and theoretical models to complex in silico 
(e.g., Q(n)SP/AR) algorithms) into an interoperable data and modelling ‘infrastructure’. 
This ‘infrastructure’ will be connected to the GRACIOUS interoperable module for 
grouping and read-across of nanoforms to deliver to it curated data and computing 
capabilities. The module will be specifically designed to enable existing user-friendly 
risk assessment and management software tools (e.g., SUNDS, caLIBRAte SoS) to 
perform grouping and read-across. Its results will be delivered as easy to comprehend 
dynamic charts and textual reports to facilitate further analysis and/or decision making. 
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