

MEASUREMENTS MATTER In our daily life

Quality Assurance for Characterisation of Nanomaterials and Implementation of Labelling Requirements for Food and Consumer Products

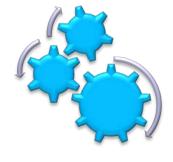
Elke Anklam

https://ec.europa.eu/jrc/en/institutes/irmm

esearch

Measurements, legislation and standardisation

- Millions of measurements are performed every year
- Important decisions are taken based on those measurements
- Need for harmonised implementation of policies in EU28+
- 40 % of EU legislation is related to measurements



Who benefits of standardisation?

- Industry: competiveness and innovation
- Producers and Authorities: effective implementation of legislation
- Trade: facilitated movement of goods
- Environment: sustainable processes
- Consumers: safe and high-quality products on the market

Prerequisite for consumers' acceptance

Harmonisation and standardisation

- Definition and characterisation of potentially hazardous compounds
- Safety assessment (methodologies for risk assessment)
- Control of final products on the market (analytical methods, sampling, etc.)
- Quality assurance tools (reference methods and materials, proficiency testing)

Quality assurance tools for quality of test results

Nanomaterials - harmonisation/ standardisation

- Hazard assessment requires comparable data
- Labelling requirements based on nanomaterial definition
- Analysis (characterisation) is difficult
- Detection and determination in complex matrices such as food or cosmetics is challenging

Regulatory background

EC nanomaterial definition

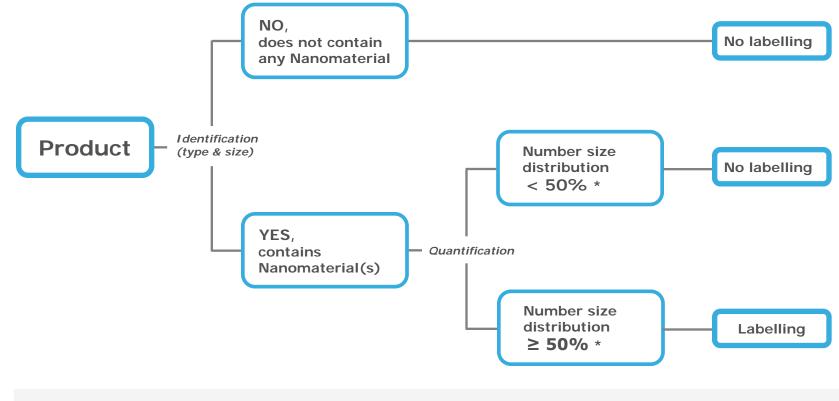
- Commission Recommendation 2011/696/EU
- Number-based particle size distribution
- Upper limit 100 nm, lower limit 1 nm
- > 50 % of particles between 1 nm and 100 nm

Labelling requirements

- Food information to consumers EU)1169/2011
- Cosmetics (EC) No 1223/2009

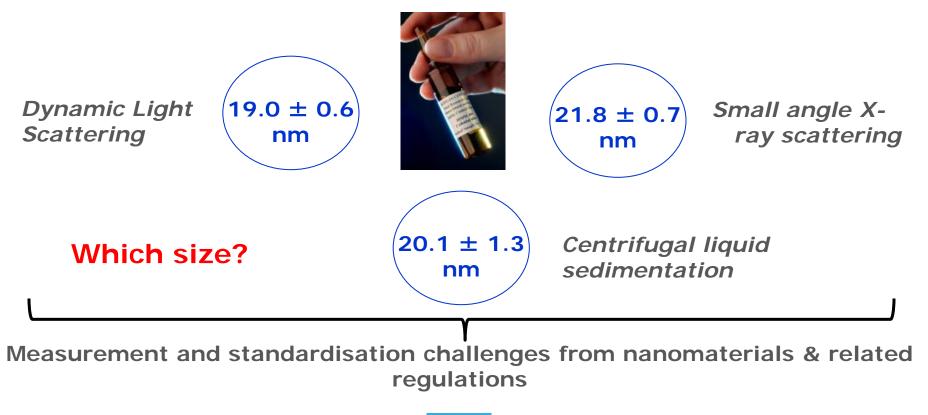
Detection and Quantification of Nanomaterials

Implementation of labelling requirements


- No hazard labelling
- Consumer information

Need for appropriate analytical and quality assurance tools

Labelling of products containing nanomaterials

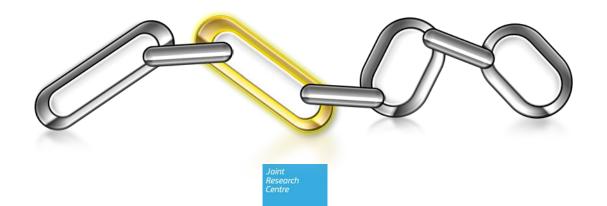

* in specific cases lower

Characterisation, Identification, Detection -Challenges

'Simple' suspension of nanoparticels

Challenges for CRM production

Measurands


- What to measure?
- Decision relevance!
- Method defined or operationally defined

- Qualified expert collaborators
- Quality Assurance (ISO/IEC 17025)
- Proficiency
- Availability of instruments

- Measurement uncertainties
- Realistic
- Fit-for-decision

Metrological traceability

- SI
- Method
- CRM

CEN/TC 352 Nanotechnologies

EC Mandate M461

Coordination with other CEN/TCs

- Measuring nanoobjects in complex matrices
- Definition of relevant measurands

ISO/TC 229 Nanotechnologies

Harmonisation across industrial sectors

Coordination with other ISO/TCs

- Nanomaterial terminology
- Characterisation of specific nanomaterials (quantum dots, carbon nanotubes, ...)

ISO/TC 24/SC4 Particle characterization

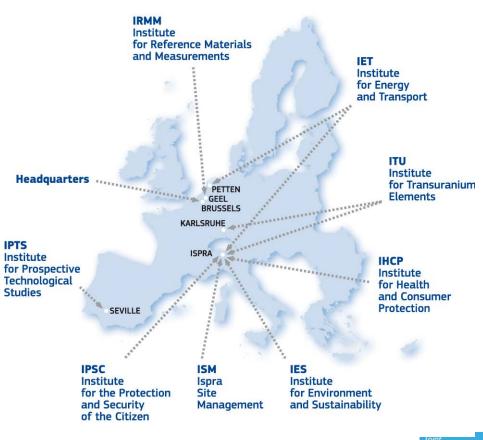
Harmonisation of particle sizing across size scales (nano to macro)

Basic particle sizing instrument standards

- Dispersion stability
- Characterization of particles, including nanoparticles
- Reference materials

Outcome of EC-FP 7 Project Nanolyse

Development of analytical methods


SiO₂ nanoparticles in tomato soup

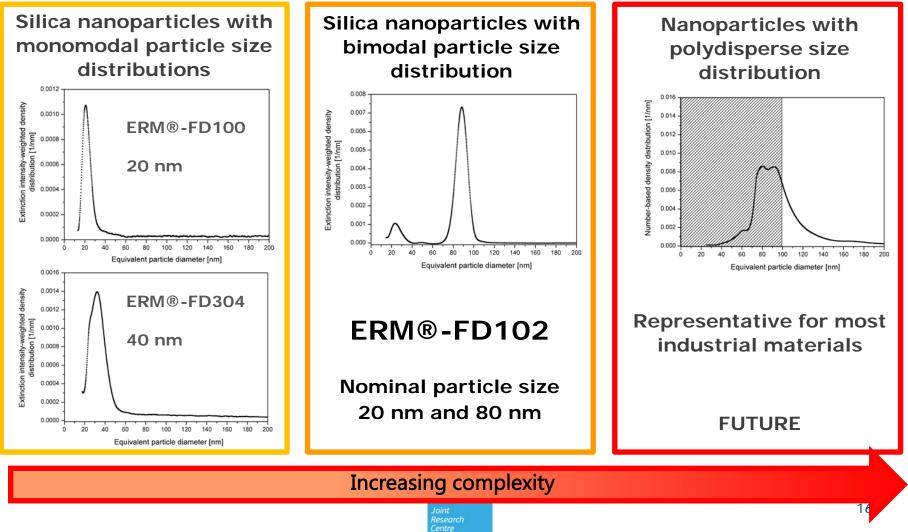
The Joint Research Centre (JRC) and Nanotechnology/Nanomaterials

- European Commission's in-house science service
- Supporting EU policies with independent, evidence-based scientific and technical support
- ~ 3.000 staff (2015)
- 6 locations

The JRC and Nanotechnology/Nanomaterials

Analysis of nanomaterials in consumer products

- Developing methods for detection and quantification
- Validating fit-for-the-purpose analytical methods
- Developing and providing certified reference materials


Safety assessment of nanomaterials

- Developing standardised protocols for toxicity testing
- Establishing testing strategies and risk assessment methodologies
- Hosting a repository of representative nanomaterials for testing and the NANOhub database

Certified Reference Materials (CRMs)



Summary

- Need for reliable measurements
- Need for quality assurance tools such as
 - Certified Reference Materials (CRMs)
 - Fit-for-purpose validated analytical methods
 - Proficiency Tests
 - Documentary standards, guidance on measurements
- Need for increased collaboration of measurement communities
- Need for scientific advice to policy makers

Quality Assurance and cooperation are important

- to ensure reliable data and therefore
 - O to ensure consumer's confidence
 - to facilitate trade

- to have confidence in measurements avoiding disputes between Member States and other countries
- to have confidence in risk (hazard) assessment results
- to reduce costs providing efficiency and preventing duplication of measurements

Thank you for your attention!

Colloidal silica ERM®-FD102

Joint Research Centre