eNanoMapper

Egon Willighagen
Maastricht University, The Netherlands
@egonwillighagen
ORCID:0000-0001-7542-0286

U.S.-EU: Bridging NanoEHS Research Efforts 2013-12-02/03, Arlington, USA

(on behalf of...)

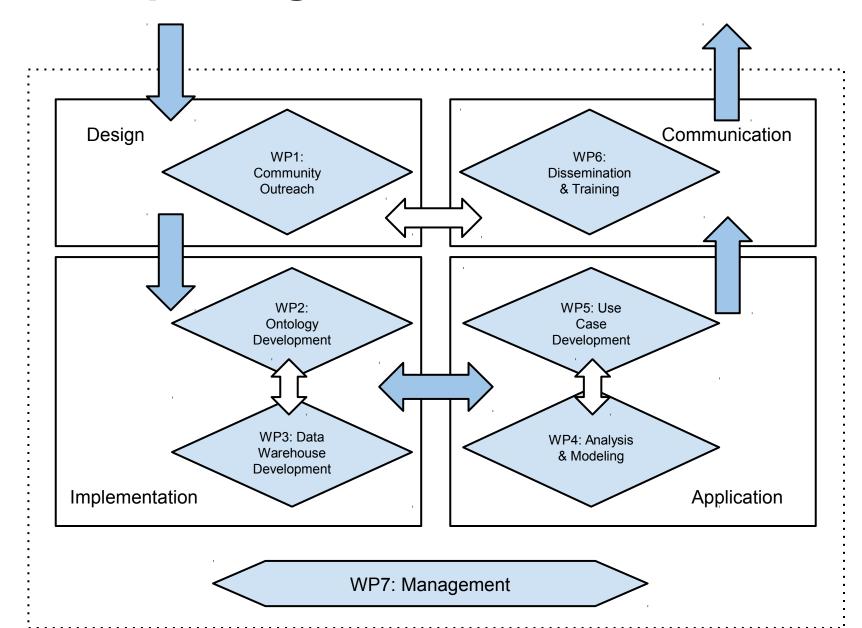
These slides are mine and may not fully reflect the opinion of all partners.

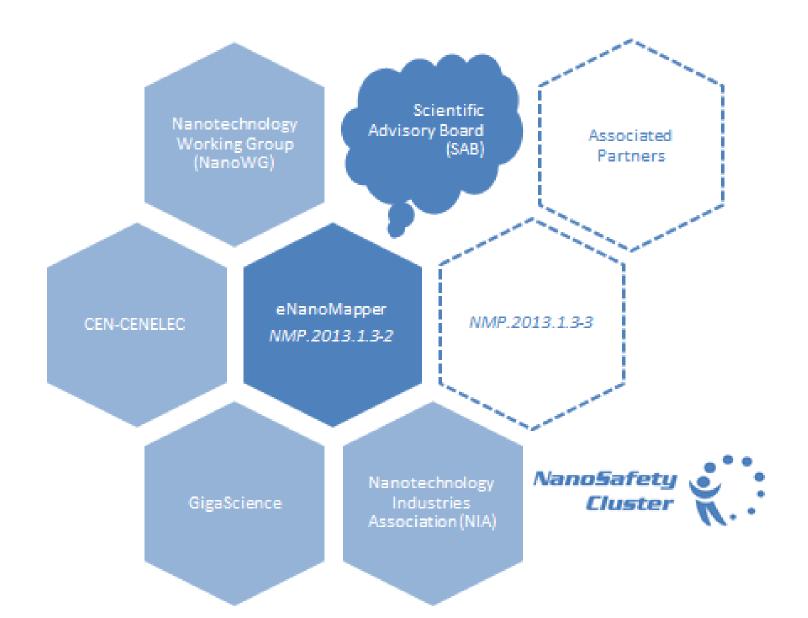
Goal NMP-2013.1.3-2: Nanomaterial Safety Assessment

- Ontology ...
 - what are we talking about
 - minimal reporting standards
- Database(s) ...
 - all content described with ontologies
 - interoperate with and link to other databases
- ... for modelling and risk assessment
 - API needed for database
- Community Embedding
 - solve real needs

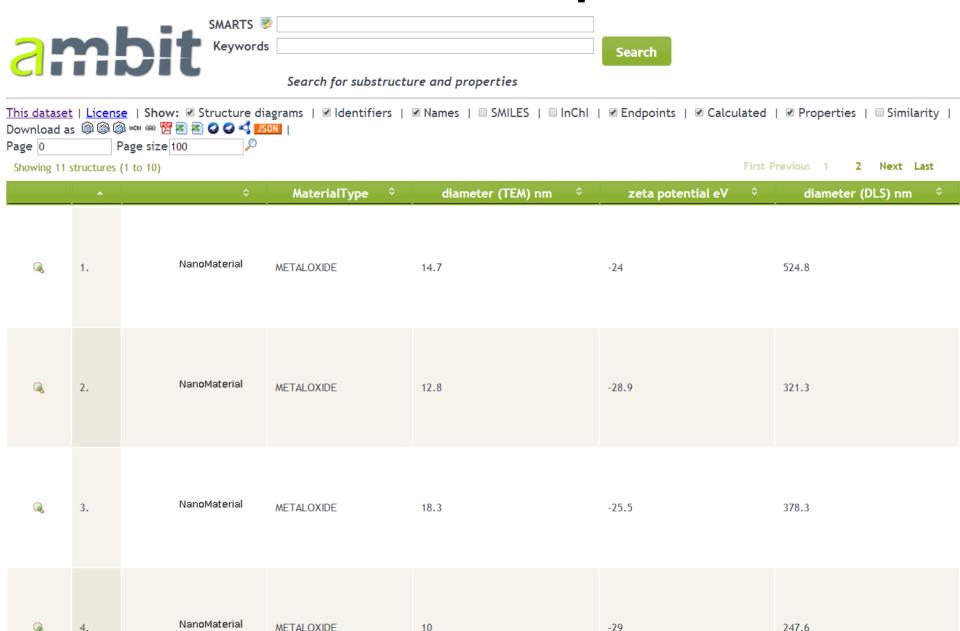
Maastricht University in Learning!

Douglas Connect GmbH, Switzerland


Nat. Tech. Univ. of Athens, Greece


What we envision...

- 1. (re)use (open) ontologies
 - CHEMINF, NPO, BAO, QUDT, ...
- 2. based on OpenTox
 - EU FP7 projects: OpenTox, ToxBank
 - Open Source implementations (incl. AMBIT)
- 3. Application Programming Interfaces (APIs)
 - allow bridging with data analysis tools
 - exchange formats: ISATab, RDF, ...


Work packages

Community Embedding

A sketch: Based on OpenTox ...

Semantic Predictive Toxicity

Features

Showing 4 properties (1 to 4)

P

F657

F658

Name ?

∠ MaterialType

Features (identifiers, measured and calculated properties)

Units

nm

Origin ? 💠

Dataset

Dataset

AMBIT @ sourceforge.net | Help

First Previous

Nominal

values ?

■ No

No

■ No

■ No

Values

Type ?

String

Numeric

Numeric

Numeric

★ Home
Structure search
□ <u>All datasets</u>
Add new structure
🗅 Import a new dataset
□ <u>Import properties</u>
□ <u>All substances</u>
■ <u>Predict</u>
■ <u>Build model</u>
Algorithms
Models Models
⇔ <

Help: Feature service

What is a Feature service ? | API

<u>F659</u>	p zeta potential	eV	owl:sameAs	<u>Dataset</u>	1
<i>§</i> F660	A diameter (DLS)	nm	http://purl.bioontology.org/ontology/npo#NPO_1915 owl:sameAs	<u>Dataset</u>	1
Display 10 propert	•				

Same As ?

http://www.opentox.org/nano#Material

http://purl.org/obo/owl/PATO#PATO_0001334

owl:sameAs 🗗

owl:sameAs 🗗

Substance study Mono-constituent, multiconstituent, additives, impurities.

Enter substance I5 UUID

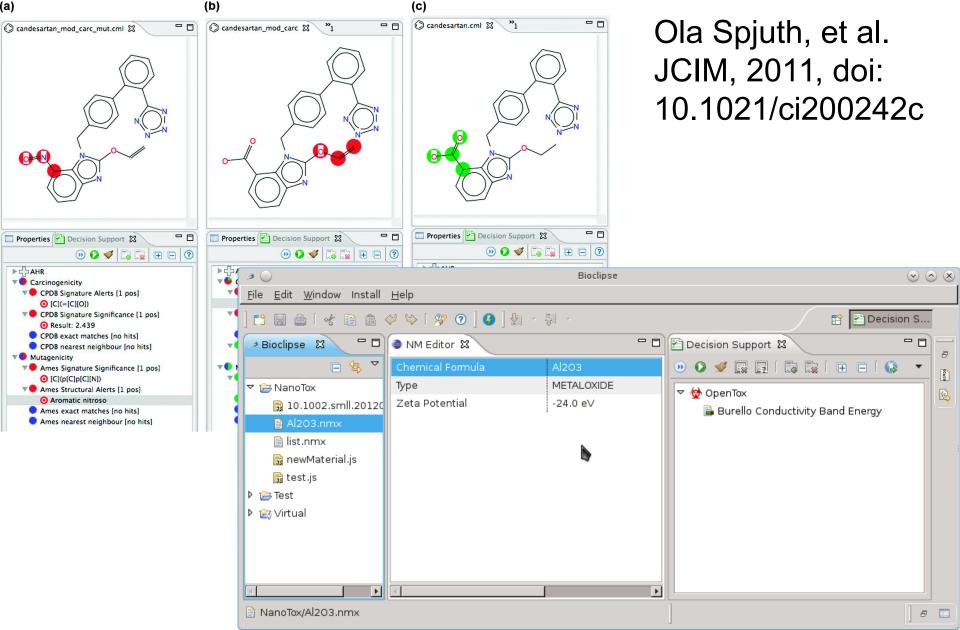
Search

Cor	mposition	P-Chem (2)	Env Fate (3)	Eco Tox (4) Tox (2)			
Filter.								
то_ві	ODEG_WATER_	SCREEN_SECTION (3)					
	Name	Condition	ons	E	fects		Interpretation	
•	A	Time Po	int	Endpoint ϕ	Result	≜	Result	\$ Guidance
scr	degradation in water: eening tests, C4#1/Ch.3.5	28 d		% Degradation	= 90%		-	OECD Guideline 301 D (Ready Biodegradability: Closed Bottle Test)
	degradation	3 h		% Degradation	= 0%			OECD Guideline

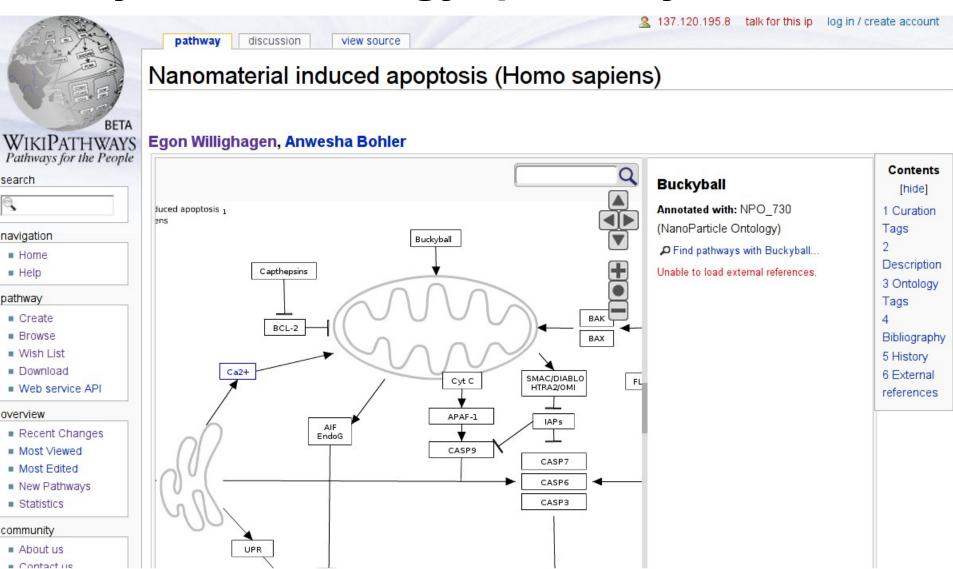
Name	Conditions	Effects		Interpretation		Protocol	
A	Time Point	Endpoint ϕ	Result	Result	Guidance	Owner	UUID
iodegradation in water: creening tests, IUC4#1/Ch.3.5	28 d	% Degradation	= 90%	-	OECD Guideline 301 D (Ready Biodegradability: Closed Bottle Test)	IUC4 TODO	IUC4-1d75f.
iodegradation in water:	3 h	% Degradation	= 0%		OECD Guideline 301 D (Ready	IUC4 TODO	IUC5-2ea8.
tests.001	7 d	% Degradation	= 20%	and the bind one debte	Biodegradability: Closed Bottle Test)		
	14 d	% Degradation	= 50%	readily biodegradable	restj		
	28 d	% Degradation	= 85%				
iodegradation in water:	3 h	% Degradation	= 9%		N/A	IUC4 TODO	IUC5-69bc
screening tests.002	7 d	% Degradation	= 40%	inhaarah bir da aardah la			
	14 d	% Degradation	= 50%	inherently biodegradable			
	28 d	% Degradation	= 80%				

Showing 1 to 3 of 3 entries

Previous Next


Application Programming Interfaces

```
1// data from: doi:10.1002/smll.201202128
 \exists materials = [
    [ "metal oxide", "Al203", 14.7, 5.2, "nm", 524.8, 32.8, "nm", -24.0, 0.5, "eV"],
    [ "metal oxide", "CeO2", 12.8, 3.4, "nm", 321.3, 8.6, "nm", -28.9, 3.3, "eV"],
   [ "metal oxide", "CoO", 18.3, 6.8, "nm", 378.3, 16.4, "nm", -25.5, 1.3, "eV"],
    [ "metal oxide", "Co304", 10.0, 2.4, "nm", 247.6, 16.9, "nm", -29.0, 2.2, "eV"],
    [ "metal oxide", "Cr203", 71.8, 16.2, "nm", 478.5, 7.2, "nm", -26.2, 3.1, "eV"],
    [ "metal oxide", "CuO", 193.0, 90.0, "nm", 289.5, 31.0, "nm", -26.9, 0.8, "eV"],
   [ "metal oxide", "Fe203", 12.3, 2.9, "nm", 385.2, 6.3, "nm", -24.1, 2.0, "eV"],
    [ "metal oxide", "Fe304", 12.0, 3.2, "nm", 831.7, 41.8, "nm", -27.0, 2.3, "eV"],
    [ "metal oxide", "Gd203", 43.8, 15.8, "nm", 726.7, 54.8, "nm", -34.7, 0.7, "eV"],
   [ "metal oxide", "HfO2", 28.4, 7.3, "nm", 349.9, 5.2, "nm", -24.3, 2.1, "eV"],
    [ "metal oxide", "In203", 59.6, 19.0, "nm", 303.2, 5.2, "nm", -35.5, 2.4, "eV"]
15]
16 properties = [
   [ "diameter (TEM)", 2, 3, 4 ],
18 [ "diameter (DLS)", 5, 6, 7 ],
19 [ "zeta potential", 8, 9, 10 ],
20 ]
22 list = nm.createList();
23 for (var i=0: i<materials.length: i++) {
    material = nm.newMaterial(materials[i][0]);
    nm.setComposition(material, materials[i][1]);
    for (var p=0; pproperties.length; p++) {
      nm.addCharacterizationValue(
        material, properties[p][0],
        materials[i][properties[p][1]], materials[i][properties[p][2]],
30
        nm.getUnitBySymbol(materials[i][properties[p][3]])
31
32
    nm.save(material, "/Virtual/" + materials[i][1] + ".nmx");
    list.add(material):
35 }
36 list;
37 opentoxnm.predictWithModel(
    "http://apps.ideaconsult.net:8080/bioclipse/",
    "http://apps.ideaconsult.net:8080/bioclipse/model/22",
40
    list
41)
42 opentoxnm.calculateDescriptor(
```


Bioclipse Scripting Language

(JavaScript)

Decision Support

Systems Biology: pathways

Andón FT, Fadeel B; "Programmed Cell Death: Molecular Mechanisms and Implications for Safety Assessment of Nanomaterials."; Acc Chem Res, 2012

Thanks

- eNanoMapper partners
 - see 4th slide
- AMBIT/OpenTox NM Bioclipse integration
 - dr Nina Jeliazkova (IdeaConsult Ltd.)
 - dr Ola Spjuth (Uppsala University, GenettaSoft)

Some reading material from my side:

- 1. E.L. Willighagen et al., Computational toxicology using the OpenTox application programming interface and Bioclipse, BMC Research Notes, 2011, doi:10.1186/1756-0500-4-487
- O. Tcheremenskaia et al., OpenTox predictive toxicology framework: toxicological ontology and semantic media wiki-based OpenToxipedia, J. Biomed. Sem., 2012, doi:10.1186/2041-1480-3-S1-S7
- 3. C. Steinbeck et al., The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo- and Bioinformatics. J. Chem. Inf. Comput. Sci, 2003, doi:10.1021/ci025584y
- 4. J. Hastings et al., The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web, PLOS ONE, 2011, doi:10.1371/journal.pone.0025513