

CoR Predictive Modeling for Human Health

Structure-Activity Relationships for nanomaterials

Robert Rallo^{1,3} and Yoram Cohen^{2,3}

¹ BIOCENIT Research Lab, Universitat Rovira i Virgili, Catalunya
 ² Chemical and Biomolecular Engineering Department, UCLA, USA
 ² UC Center for Environmental Implications of Nanotechnology, USA

In silico toxicology

- Complement to in vitro and in vivo testing
- Fundamental component of Alternative Testing Strategies (ATS)
- Based on computational chemistry (and biology) principles
 - chemoinformatics, bioinformatics, computational systems biology
- Quantitative) Structure-Activity Relationships (Q)SAR
 - chemical similarity principles
- Challenges:
 - Size and diversity of the chemical space
 - Regulatory use of models

In silico (nano)toxicology

- Use of high-throughput assays for the rapid screening of NMs toxicity
- Challenges/Needs:
 - Common vocabulary for NMs
 - Development of nanodescriptors
 - Similarity metrics
 - Guidelines for model development and validation
 - Public, curated & quality controlled data

Development of structure-activity relationships

- Data exploration / data mining
- Identification of informative:
 - Features & samples
- Endpoint definition
- Model development
 - Performance assessment
 - Applicability domain
- Use of the model
 - Cost of errors

Cohen et al. Accounts of Chemical Research, 2012, **46**(3): 802-812

DATA EXPLORATION & DATA MINING

pubs.acs.org/est

ARTICLE

Self-Organizing Map Analysis of Toxicity-Related Cell Signaling Pathways for Metal and Metal Oxide Nanoparticles

Robert Rallo,^{†,†} Bryan France,[†] Rong Liu,[†] Sumitra Nair,[†] Saji George,^{†,§} Robert Damoiseaux,[‡] Francesc Giralt,^{⊥,‡} Andre Nel,^{†,§} Kenneth Bradley,[†] and Yoram Cohen^{*,||,†}

Cell Signaling Pathways (TRE)

Clustering of eNPs with similar activity profiles

Visual data analysis

Association rule mining of cellular responses induced by metal and metal oxide nanoparticles Rong Liu, Bryan France, Saji George, Robert Rallo, Haiyuan Zhang, Tian Xia, Andre E. Nel, Kenneth Bradley and Yoram Cohen. DOI: 10.1039/C3AN01409F

Data-driven hypothesis generation

	RAW264.7						
No.	Antecedent	Consequent	Supp. ^a	Conf.	Underlying NPs ^b		
R ₁	E2F	Myc, p53	0.117	1.000	ZnO[50-100], Pt[50-200], Al ₂ O ₃ [0.78-1.56]		
\mathbf{R}_2	SMAD	Myc, p53	0.100	0.857	ZnO[50, 200], Pt[100-200], A12O3[1.56], Ag[3.13]		
R ₃	Myc	p53	0.183	0.917	ZnO[50-200], Pt[12.5-200], Al2O3[0.78-1.56], Ag[3.13]		
R ₄	p53	Myc	0.183	0.846	ZnO[50-200], Pt[12.5-200], A12O3[0.78-1.56], Ag[3.13]		
R_5	MitoSox, p53	Мус	0.117	1.000	ZnO[50-200], Pt[25-200]		
R ₆	MitoSx, Myc	p53	0.117	1.000	ZnO[50-200], Pt[25-200]		
R ₇	SMAD, p53	Мус	0.100	1.000	ZnO[50, 200], Pt[100-200], Al2O3[1.56], Ag[3.13]		
R ₈	SMAD, Myc	p53	0.100	1.000	ZnO[50, 200], Pt[100-200], Al ₂ O ₃ [1.56], Ag[3.13]		

Identification of cause-effect relationships via confirmatory experiments

Computational Systems Biology

- network analysis of gene differential co-expression
- based on the complete genome information
- takes into account pathway cross-talking

Experimental Techniques, RSC Press, 2012

- comparison with null case to compute statistical significance
- robust to noise in biological data

Roca et al. Novel genomic approaches for environmental risk assessment of metal nanoparticles, Nanotoxicology 2012, Beijing

C. elegans exposed to nano-Ag

- [nano-Ag]= 0.1 mg/L, exposure time=24h
- Affymetrix GeneChip C. elegans Genome Array
- Gene-pathway annotations obtained from KEGG
- Data size after preprocessing: 1857 genes and 123 pathways

Distance distribution between pairs of genes in the complete network (white) compared to the subset of 19 most differentially expressed genes (gray). Statistical significance of the difference p=0.027

- J.-y. Roh, S. J. Sim, J.Yi, K. Park, K. H. Chung, D.-y. Ryu and J. Choi, *Environ. Sci. Technol.*, 2009, **43**, 3933–3940.
- Roca et al. in Leszynski, Puzyn Eds. Towards efficient design of Safe Nanomaterials: Innovative Merge of Computational Approaches and Experimental Techniques, RSC Press, 2012

STRUCTURE-ACTIVITY RELATIONSHIPS

Small, 2011

Classification NanoSAR Development for Cytotoxicity of Metal Oxide Nanoparticles

Rong Liu, Robert Rallo, Saji George, Zhaoxia Ji, Sumitra Nair, André E. Nel, and Yoram Cohen*

Model: Logistic regression

 $\ln \left(\frac{\mathbf{P}(NP \in T)}{\mathbf{P}(NP \in N)}\right) = 3600.6 + 103.5 \times d \\ + 9.5 \times \theta_v + 97.6 \times P_{\mathrm{Me}} - 58.5 \times E_{\mathrm{Meo}}$

Dataset: 9 metal oxide nanoparticles Exposed sample: BEAS-2B cells Endpoint: loss of plasma membrane integrity Exposure conditions:

- 0.375-200 mg L⁻¹
- up to 24h

Model parameters:

- Primary size
- Period of the metal
- Atomization energy of the metal oxide
- Nanoparticle Volume fraction

Model development pipeline

Nano-SAR Development for Bioactivity of Nanoparticles with Considerations of Decision Boundaries

Rong Liu, Robert Rallo, Ralph Weissleder, Carlos Tassa, Stanley Shaw, and Yoram Cohen*

Model: Naive Bayes Classifier $p(x|T) = 3.37 \times 10^{-3} \times exp$ $\left[-6.05 \times 10^{-3} \times (x_1 - 8.33)^2\right]$ $-18.50 \times 10^{-3} \times (x_2 + 6.79)^2$ $p(x|N) = 1.91 \times 10^{-3} \times exp$ $\left[-6.89 \times 10^{-3} \times (x_1 - 21.04)^2\right]$ $-5.20 \times 10^{-3} \times (x_2 + 9.91)^2$

Nanoscale 2013

RSCPublishing

PAPER

View Article Online View Journal

Development of structure–activity relationship for metal oxide nanoparticles[†]

Cite this: DOI: 10.1039/c3nr01533e

Rong Liu,^a Hai Yuan Zhang,^a Zhao Xia Ji,^a Robert Rallo,^b Tian Xia,^c Chong Hyun Chang,^a Andre Nel^c and Yoram Cohen^{*ad}

Zhang et al. ACS Nano, 2012, 6(5):4349-4368

SVM-based Structure Activity Relationship $P(T|\mathbf{x}) = 1/(1 + e^{-f(\mathbf{x})}) \qquad f(\mathbf{x}) = \sum_{i=1}^{6} \alpha_i e^{-2\left[\left(x_{i,1}-x_1\right)^2 + \left(x_{i,2}-x_2\right)^2\right]} + b$ Support vectors:{ZnO, Ni₂O₃, Mn₂O₃, NiO, CeO₂, Fe₂O₃}

Application Domain Analysis - Optimal Prediction Region -

NANOINFORMATICS APPLICATIONS

COMPUTATIONAL SCIENCE&DISCOVERY

HDAT: web-based high-throughput screening data analysis tools

Rong Liu¹, Taimur Hassan¹, Robert Rallo² and Yoram Cohen³

¹ California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA

² Departament d'Enginyeria Informatica i Matematiques, Universitat Rovira i Virgili,

Avinguda Paisos Catalans 26, E-43007 Tarragona, Catalunya, Spain

³ Chemical and Biomolecular Engineering Department, University of California,

Los Angeles, CA 90095, USA

E-mail: yoram@ucla.edu

High Throughput Screening Data Analysis Tools (HDAT)

File/Folder	Plate Operations	and the second second	Plate Visual	ization
Login to upload	Remove Outliers Normalization Method	Color Settin	ngs Scheme	High
guest	(Raw Output)	1 10	Rainbow	
example.csv		Well Settin Plates Per R	gs low Height	Width
		 3	15	15
	HTS Process			
	Analysis Method			

	I SOM			
ate list (example.csv)				
I-T01	*			
1-T02				
I-T03	Hit Identification			
I-T05				
-706	Up			
I-T24	Direction: Down			
uo-T01	(iii) Both			
uo-102	S DOW			
uo-T04	Threshold:			
luo-T05		F	ALIALAC	-
	+		ANALYZ	E

http://nanoinfo.cein.ucla.edu/public/hdat

Preprocessing and data analysis software

Multidendrograms

Journal of Classification June 2008, Volume 25, Issue 1, pp 43-65

Solving Non-Uniqueness in Agglomerative Hierarchical Clustering Using Multidendrograms

Alberto Fernández, Sergio Gómez

Available from:

http://deim.urv.cat/~sgomez/multidendrograms.php

Journal of

Classification

RapidMiner 5 Extension for Feature Selection

RONG LIU, ROBERT RALLO, and YORAM COHEN, Int. J. Info. Tech. Dec. Mak. 10, 967 (2011). DOI: 10.1142/S0219622011004671

UNSUPERVISED FEATURE SELECTION USING INCREMENTAL LEAST SQUARES

RONG LIU

Center for the Environmental Implications of Nanotechnology and Chemical and Biomolecular Engineering Department, University of California, Los Angeles, CA 90095, USA

ROBERT RALLO

Center for the Environmental Implications of Nanotechnology and Chemical and Biomolecular Engineering Department, University of California, Los Angeles, CA 90095, USA

Departament d'Enginyeria Informatica i Matematiques, Universitat Rovira i Virgili, Av. Paisos Catalans, 26. 43007 Tarrragona, Catalunya, Spain

YORAM COHEN

Corresponding author.

Center for the Environmental Implications of Nanotechnology and Chemical and Biomolecular Engineering Department, University of California, Los Angeles, CA 90095, USA

Available from:

http://rongliu.weebly.com/software.html

PLos one

Automated Phenotype Recognition for Zebrafish Embryo Based In Vivo High Throughput Toxicity Screening of **Engineered Nano-Materials**

Rong Liu^{1,2}, Sijie Lin¹, Robert Rallo^{1,3}, Yan Zhao⁴, Robert Damoiseaux⁵, Tian Xia^{1,6}, Shuo Lin⁴, Andre Nel^{1,6}, Yoram Cohen^{1,2}*

Tool for automatic zebrafish embryo phenotyping

	true hatched	true unhatched	true dead	class precision
pred. hatched	524	4	8	97.76%
pred. unhatched	4	321	12	95.25%
pred. dead	0	2	278	99.29%
class recall	99.24%	98.17%	93.29%	

- The class precision is the percentage of correct classified samples in a predicted class. For example the precision of the (predicted) hatched class is given by

[†] - The class recall is the proportion of the samples in the class that were correct identified. For example the recall of (true) hatched class is 524/(524+4+0) =

Web tool for the integrated analysis of molecular signatures

home | analysis results

info@biocenit.cat + +34 977 559 765

GENES IN PATHWAY

b0688 b1723 b1852

b0688 b1723 b3612

b0688 b3431

b0688 b1723

b3386

b0688

b1095

h1095

b4399

b0593

b0593 b3386

b1723

b2976

b0418 b3612

b2976

b1723 b3612

b0678 b0688 b3338

b0588 b3476 b4287

b0238 b0517 b0688

© BIOCENIT 2013

Accesible from: http://www.biocenit.cat

Nanosafety Data Management System

me Find Create Upload

nanoDMS is a Nanomaterial Data Management System developed within the EU FP project MODERN. The application is intended to streamline the creation and manage of nanosafety data and to facilitate data sharing via the ISA-TAB-Nano format.

Features:

- Web-based application
- ISA-TAB-Nano validation
- Import/Export
- Ontology support

NTOLOGY SOURCE REFERENCE							
INVESTIGATION INVESTIGATION PUBLICATIONS INVESTIGATION CONTACTS MATERIAL							
						TUDIES	
						Add	
						UTHSCH_UMG_MDACC_RU_UTA_PDecuzziJCR2010-size	3
STUDY							
Study Outcome:	6 X						
Study Disease:							
Study Title: Size via coulter counter							
tudy Public Release Date:							
tudy Identifier: UTHSCH_UMG_MDACC_RU_UTA_PDecuzziJCR2010-size							
Study Description: The diameter and number of particles were measured by Z2 Coulter Particles were measured by Z2 Coulter Particles were suspended in the balance Diluent, Beckman Coulter Fullerton, CA) and counted. Study Submission Date:	article Counter and Size Analyzer ed electrolyte solution (ISOTON II						
Study File Name: s_UTHSCH_UMG_MDACC_RU_UTA_PDecuzziJCR2010-allPCC.txt	Set File						
STUDY DESIGN							
STUDY PUBLICATIONS							
STUDY FACTORS							
STUDY ASSAYS							
STUDY PROTOCOLS							

Acknowledgment

- EU FP7 MODERN, Contract No. 309314
- UC CEIN, NSF/EPA (NSF DBI-0830117)

The members of UC CEIN and the members of BIOCENIT Research Lab at Universitat Rovira i Virgili

