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CoR Predictive Modeling for Human Health 



In silico toxicology 

•  Complement to in vitro and in vivo testing 

•  Fundamental component of Alternative Testing Strategies (ATS) 

•  Based on computational chemistry (and biology) principles 

•  chemoinformatics, bioinformatics, computational systems biology 

•  (Quantitative) Structure-Activity Relationships (Q)SAR 

•  chemical similarity principles 

•  Challenges: 

•  Size and diversity of the chemical space 

•  Regulatory use of models 



In silico (nano)toxicology 

•  Use of high-throughput assays for the rapid 
screening of NMs toxicity 

•  Challenges/Needs: 

•  Common vocabulary for NMs 

•  Development of nanodescriptors 

•  Similarity metrics 

•  Guidelines for model development and 
validation 

•  Public, curated & quality controlled data 



Development of structure-activity relationships 

•  Data exploration / data mining 

•  Identification of informative: 
•  Features & samples 

• Endpoint definition 

• Model development 
•  Performance assessment 

•  Applicability domain 

•  Use of the model 
•  Cost of errors 

Cohen et al. Accounts of Chemical Research, 2012, 
46(3): 802-812	
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The analysis proceeds by first dividing the nanoparticles into
two categories (significant effect (SE) and insignificant effect
(IE)) according toapredefined EC50 threshold (e.g., log(1/EC50)g
3 identifies ENMhaving a significant effect on E. coli). A nano-
SAR, based on a logistic regression model, was then devel-
oped for classifying the metal oxides nanoparticles as
having either significant effect (SE) or insignificant effect (IE)
using two quantum chemical energy descriptors (energy
of the lowest unoccupied molecular orbital (LUMO) and
enthalpy of formation of a gaseous cation (ΔHMeþ)).

33 The
results as shown in Figure 3 depict a decision boundary (in
yellow) that separates the two categories (SE and IE)
(with equal acceptance level of false negative and false
positive). In this example, the nano-SAR model yields a
false positive classification of Y2O3 andmisclassifies V2O3

as having insignificant effect. Upon introducing a penalty
function or an acceptance level of 7:1 (i.e., false negatives
have a penalty (LFN) of classification 7 times greater than
for false positives (LFP)) produces a more conservative
nano-SAR with zero false negatives at the expenses of
adding Bi2O3 as another false positive. The above exam-
ple illustrates that the use of nano-SARs for regulatory
applications could benefit from considerations of the level
of acceptance of false positives together with the relia-
bility of toxicity data.

3. Environmental Impact Assessment
Environmental impact assessment requires identification
and acceptance criteria of potential risk or hazard ranking.
The analysis should include the various factors discussed
in sections 1 and 2, such as production volume, emission
rates and modes of release, likely concentrations in the
various environmental media, exposure pathways, toxicity
data (e.g., dose"response), ENMs’ physicochemical proper-
ties, possible environmental transformations, as well as the
multimedia distribution of ENMs that govern exposures
(Figure 4).

Prospects for quantitative risk assessment of nanomate-
rials are plagued by a general lack of environmental con-
centrations, exposure, and toxicity data.34 At the same time,
the number of commercially produced ENMs could increase
from the current 103 different nanomaterials to an order of
105 within a decade.34 Clearly, applying conventional risk
assessment techniques used for chemicals to nanomaterials
would be a formidable task given the lack of environmental
monitoring data. Therefore, risk assessment for nanomate-
rials requires carefully crafted strategies that optimally use
the available information to guide the decision-making
process.35 For example, cause and effect relationships in-
volving multiple interdependent ranking criteria can be
modeled using Bayesian networks.36 The use of a Bayesian
network is particularly useful since this network encodes, as
a joint probability distribution, the domain knowledge
(either given explicitly by an expert or extracted from data)
of interdependency relationships between variables. In the
decision-making problem one strives to recommend the
alternative that maximizes the expected objective given
the observation of a set of external factors and preferences
of the decision maker.

Irrespective of the complexity of establishing toxicity
metrics and exposure assessment, one is likely to be con-
fronted with significant fuzzy information (i.e., qualitative or
quantitative but of various levels of uncertainty). Therefore,
uncertainties should be considered in various paths of the
analysis process. The premise of such an approach is that a
given ENMs would be of environmental concern if it is
hazardous and there is exposure to the receptors of concern
at concentration levels that may induce an adverse effect.
Accordingly, in order to determine if a given ENM should be
of environmental concern, one can proceed with an initial
screening to first evaluate exposure likelihood and subse-
quently (or in parallel) the potential hazard associated
with the ENM, followed by detailed environmental impact
analysis as may be suggested by the initial screening.

FIGURE 3. Probability map of nanoparticle (X) having significant effect
(P(SE|X)) versus having insignificant effect (P(IE|X)) (i.e., P(SE|X) versus
P(IE|X)). The log ratio of the two probabilities is correlated with two ENM
descriptors via a simple nano-SAR: ln(P(SE|X)/P(IE|X)) ="0.1882LUMO"
0.0087ΔHMeþ þ 7.834. The curves illustrate two decision boundaries
corresponding to different acceptance levels of false negative relative to
false positive (expressed via the ratio LFN:LFP).
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Clustering of eNPs with similar activity profiles	
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ABSTRACT: The response of a murine macrophage cell line exposed to a library of seven metal and metal oxide nanoparticles was
evaluated via High Throughput Screening (HTS) assay employing luciferase-reporters for ten independent toxicity-related signaling
pathways. Similarities of toxicity response among the nanoparticles were identified via Self-Organizing Map (SOM) analysis. This
analysis, applied to the HTS data, quantified the significance of the signaling pathway responses (SPRs) of the cell population ex-
posed to nanomaterials relative to a population of untreated cells, using the Strictly Standardized Mean Difference (SSMD). Given
the high dimensionality of the data and relatively small data set, the validity of the SOM clusters was established via a consensus clus-
tering technique. Analysis of the SPR signatures revealed two cluster groups corresponding to (i) sublethal pro-inflammatory responses
to Al2O3, Au, Ag, SiO2 nanoparticles possibly related to ROS generation, and (ii) lethal genotoxic responses due to exposure to ZnO
and Pt nanoparticles at a concentration range of 25-100μg/mL at 12 h exposure. In addition to identifying and visualizing clusters and
quantifying similarity measures, the SOM approach can aid in developing predictive quantitative-structure relations; however, this
would require significantly larger data sets generated from combinatorial libraries of engineered nanoparticles.

’ INTRODUCTION

There have been rising concerns that unintended exposure of
humans and other ecological receptors to engineered nanoma-
terials (eNMs) may result in adverse effects that differ from those
known for their bulk counterpart.1,2 Environmental protection
plans associated with the manufacture and use of eNMs requires
understanding nanobio interface interactions that govern the
biological activity and potential toxicity of nanomaterials. In this
regard, the rapid generation of complex toxicity data sets, inte-
grating in vitro information at both the molecular and cellular
levels with in vivo whole-organism data, has in tandem acceler-
ated the emergence of a new multilevel paradigm for toxicity
testing. An important goal of toxicity testing is to identify critical
biological pathways that, when perturbed, can lead to adverse
effects. Accordingly, high-throughput toxicity-pathway assays are
emerging as central elements of toxicity testing.3 Specifically,
high-throughput screening (HTS) aims to screen the toxicity of
nanoparticle libraries in a multivariate context that usually in-
cludes multiple cell lines, exposure times and nanoparticle
concentrations.4 HTS data analysis requires normalization to
remove systematic errors and for comparison and combination of
data acquired from different plates.5 Such data can then be used
to identify similarity patterns to construct eNM categories of

common mechanisms of action and thus support the develop-
ment of structure-activity nanotoxicity relationships.

Statistical techniques such as cluster analysis have proven
useful for “mining” the relationships hidden in multidimensional
cellular activity data sets.6 Hierarchical clustering and its applica-
tion to heat maps (i.e., mapping displays of cell activity data) are
commonly used in bioinformatics for the analysis of HTS data
sets. This clustering approach does not preserve the intrinsic
topology of the data (e.g., nanoparticles that are placed in con-
secutive leaves in the hierarchical tree structure may in fact be far
apart in the original data space). Self-Organizing Map7 analysis is
an alternative approach that provides an ordered two-dimen-
sional visualization of multidimensional HTS data where similar
nanoparticles assigned to nearby SOM units are also closer in the
HTS data space (i.e., it preserves the original distance relation-
ships). SOM provides more accurate and robust clustering speci-
fically for “noisy” data sets.8 SOM analysis has been shown to be
useful for the development of quantitative structure-activity
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Association rule mining of cellular responses induced by metal and metal oxide nanoparticles 
Rong Liu, Bryan France, Saji George, Robert Rallo, Haiyuan Zhang, Tian Xia, Andre E. Nel,  
Kenneth Bradley and Yoram Cohen. DOI: 10.1039/C3AN01409F 

macrophage 
epithelial 

Hit identification 



Data-driven hypothesis generation 

Identification of cause-effect relationships via confirmatory experiments 



Computational Systems Biology 
•  network analysis of gene differential co-expression 	


•  based on the complete genome information	


•  takes into account pathway cross-talking	


•  comparison with null case to ���
compute statistical significance	


•  robust to noise in biological data	



	


Roca et al. in Leszynski, Puzyn Eds. Towards efficient design of Safe 
Nanomaterials: Innovative Merge of Computational Approaches and 
Experimental Techniques, RSC Press, 2012	


	


Roca et al. Novel genomic approaches for environmental risk assessment of metal nanoparticles, 
Nanotoxicology 2012, Beijing	





C. elegans exposed to nano-Ag 

•  [nano-Ag]= 0.1 mg/L, exposure time=24h	


•  Affymetrix GeneChip C. elegans Genome Array	


•  Gene-pathway annotations obtained from KEGG	


•  Data size after preprocessing: 1857 genes and 123 
pathways	



Distance distribution between pairs of genes in 
the complete network (white) compared to the 
subset of 19 most differentially expressed genes 
(gray). Statistical significance of the difference 
p=0.027	



•  J.-y. Roh, S. J. Sim, J. Yi, K. Park, K. H. Chung, D.-y. Ryu and J. Choi,  Environ. Sci. Technol., 2009, 43, 3933–3940. 	


•  Roca et al. in Leszynski, Puzyn Eds. Towards efficient design of Safe Nanomaterials: Innovative Merge of 

Computational Approaches and Experimental Techniques, RSC Press, 2012	
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 Classifi cation NanoSAR Development for Cytotoxicity 
of Metal Oxide Nanoparticles 

Rong Liu, Robert Rallo, Saji George, Zhaoxia Ji, Sumitra Nair, 
André E. Nel, and Yoram Cohen*

  1. Introduction 
 Nanosized materials are increasingly utilized as elements in 
many modern industrial products and processes primarily 
due to their small size and unique nanoscale properties [  1  ] . 
Engineered nanomaterials (eNMs) are estimated to be 
components of more than 1000 commercial products, [  2  ]  and 
thus there is an increased public concern about the inherent 
adverse impacts of eNMs and the resulting exposure that 
may take place in the workplace, among consumers, and in 
the environment. [  3  ]  Although recent studies have identifi ed 
that certain eNMs possess properties that may lead to bio-
logical hazards, [  4  ]  the understanding of the general principles 
governing the toxicity potential and the long-term environ-
mental health and safety impact of these products is in its 
infancy. [  5  ]  In this regard, toxicity screening is critical for char-
acterization of the potential hazards of eNMs, which is in turn 
indispensable information for subsequent risk assessment 
and the development of environmental and health regulatory 
policies. However, generation of the required in-vitro and  DOI: 10.1002/smll.201002366 
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 A classifi cation-based cytotoxicity nanostructure–activity relationship (nanoSAR) 
is presented based on a set of nine metal oxide nanoparticles to which transformed 
bronchial epithelial cells (BEAS-2B) were exposed over a range of concentrations 
(0.375–200 mg L  − 1 ) and exposure times up to 24 h. The nanoSAR is developed using 
cytotoxicity data from a high-throughput screening assay that was processed to identify 
and label toxic (in terms of the propidium iodide uptake of BEAS-2B cells) versus 
nontoxic events relative to an unexposed control cell population. Starting with a set 
of fourteen intuitive but fundamental physicochemical nanoSAR input parameters, 
a number of models were identifi ed which had a classifi cation accuracy above 95%. 
The best-performing model had a 100% classifi cation accuracy in both internal and 
external validations. This model is based on three descriptors: atomization energy of 
the metal oxide, period of the nanoparticle metal, and nanoparticle primary size, in 
addition to nanoparticle volume fraction (in solution). Notwithstanding the success 
of the present modeling approach with a relatively small nanoparticle library, it is 
important to recognize that a signifi cantly larger data set would be needed in order 
to expand the applicability domain and increase the confi dence and reliability of 
data-driven nanoSARs. 

Structure–Activity RelationshipsSmall, 2011 

Dataset: 9 metal oxide nanoparticles 
Exposed sample: BEAS-2B cells 
Endpoint: loss of plasma membrane integrity 
Exposure conditions: 

•  0.375-200 mg L-1 

•  up to 24h 
Model parameters: 

•  Primary size 
•  Period of the metal 
•  Atomization energy of the metal oxide 
•  Nanoparticle Volume fraction 

R. Liu et al.
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descriptors do provide information for dis-
tinguishing among nanoparticles for clas-
sifi cation purposes when for the same 
environmental conditions a single biological 
medium is utilized. It is also interesting to 
note that the edges of the energy bands of a 
metal oxide (related to its capacity to induce 
redox processes inside the cell) shift to higher 
or lower energy levels with respect to the dif-
ference between  IEP  and solution’s pH. [  44  ]  It is 
noted that, relevant information regarding the 
particle aggregate size or size distribution [  7  ,  51  ]  
in the biological media was not utilized since 
such measurement are of low reliability in bio-
logical suspensions. 

 Finally, four different concentrations were 
also evaluated for model input, whereby the 
nanoparticle loading was expressed as con-
centrations on the basis of mass ( C  m , mg L  − 1 ), 
surface area ( C  s ,   m 2  L  − 1 ), number ( C  n , # L  − 1 )), 
and volume fraction (  θ   v ). Given the signifi -
cant differences in metal oxide nanoparticle 
density (2.2–7.2 g cm  − 3 ), for the same mass 
loading, the number, surface area, and volume 
fractions will differ. The above concentration 
measures are related through the metal oxide 
nanoparticle density,   ρ   (g cm  − 3 ), and pri-
mary size ( d ) (i.e.,   θ   v   =   C  m /  ρ  ,  C  s   =  2  θ   v / d  and 
 C  n   =  8  θ   v / d 3  ), and hence for the purpose of 
establishing nanoSARs they provide different 
weighting of the importance of the nano-
particle primary size and density.  

 Data Processing : Cell-based toxicity 
screening often shows high variability that 
needs to be carefully handled. [  48  ,  52  ]  There-
fore, the quality of the control data were fi rst 
assessed, via the box-plot method [  53  ]  for each 
HTS plate, and the identifi ed outliers (average 
of  ≈ 5% per plate) were removed for the sub-
sequent analysis. Subsequently, the strictly 
standardized mean difference [  30  ,  31  ]  was used 
to identify and label measurable cytotoxicity 
effects in the nanoparticle exposed relative to the unexposed cell 
population. The SSMD ( β ) is defi ned as:

 

β =
µsamples − µcontrol√
σ 2

samples + σ 2
control   

(2)   

which measures the magnitude of the (standardized) difference 
between the cell responses of the sample and control (in which 
the mean and variance are denoted by  µ s a mples  ,  σ2

s a mples  , and 
 µ contr o l  ,  σ2

contr o l   , respectively). In the present analysis a practical 
rule was developed (SI, Table S2) in order to control false-negative 
labeling via use of the maximum likelihood estimation (MLE,  β̂   ) of 
the SSMD. 

  Model Development, Validation, and Interpretation : The model 
development approach followed a scheme that integrates the 
selection of relevant input parameters (feature selection), from an 

initial pool of input parameters, with model training and validation 
in order to identify the most suitable subset of input parameters 
that produces the optimal nanoSAR classifi er ( Figure    4  ). Both 
internal and external model validations were carried out in order 
to avoid over-fi tting and assess model performance. Different 
nanoSAR classifi cation models were developed and tested 
(Equation (3)) based on a logistic regression [  54–56  ]  expressed by:

  
ln

(
P (N P ∈ T )
P (N P ∈ N )

)
= b +

∑
i ai N Pi

  
(3)   

where  P( N P ∈ T )    and  P( N P ∈ N )   are the probabilities that a 
nanoparticle will be classifi ed as toxic ( T ) or nontoxic ( N ), respectively, 
and  NP i   is the  i- th model input parameter (i.e., nanoparticle 
descriptor or concentration measure). If   P( N P ∈ T ) > P( N P ∈ N )   
(i.e.,  ln(P (N P ∈ T )/ P (N P ∈ N )) > 0   ), the nanoparticle will be 

    Figure  4 .     The integrated scheme for nanoSAR model development  

Model Input Parameters

Select Parameter Subset

Train Model using n-1 of the 
nanoparticles in the Training Data Set

Test Model with data for one 
nanoparticle of the Training Set

Train Model with the Complete Training 
Data  Set (n nanoparticles)

Test Model with the Validation
Data Set of m particles

Most Suitable Model Input 
Parameter Subset

Has every NP 
in the Training Set been 

Tested?

Is the Average Model 
Performance Satisfactory?

Is the Model 
Performance Satisfactory?

Yes

No

No

Yes

Yes

No

Cross-Validation
(Leave-One-Out)

Internal Validation
External Validation

Model development pipeline	



Model: Logistic regression 
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Nano-SAR Development for Bioactivity of Nanoparticles 
with Considerations of Decision Boundaries

  Rong   Liu  ,     Robert   Rallo  ,     Ralph   Weissleder  ,     Carlos   Tassa  ,     Stanley   Shaw  , 
    and   Yoram   Cohen   *   

 DOI: 10.1002/smll.201201903 

 The development of classifi cation nano-structure–activity Relationships (nano-
SARs) of nanoparticle (NP) bioactivity is presented with the aim of demonstrating 
the integration of multiparametric toxicity/bioactivity assays to arrive at statistically 
meaningful class defi nitions (i.e., bioactivity/inactivity endpoints), as well as the 
implications of nano-SAR applicability domains and decision boundaries. Nano-
SARs are constructed based on a dataset of 44 iron oxide core nanoparticles (NPs), 
used in molecular imaging and nano-sensing, containing bioactivity profi les for four 
cell types and four different assays. Class defi nitions are developed on the basis of 
‘hit’ (i.e., signifi cant bioactivity) identifi cation analysis and self-organizing map 
based consensus clustering; these class defi nitions enable construction of nano-SARs 
of a high classifi cation accuracy ( > 78%) with different NP descriptor combinations 
that include primary size, spin-lattice and spin-spin relaxivities, and zeta potentials. 
Analysis of the nano-SAR performance for different class defi nitions suggests that 
H4 (i.e., class with at least four hits) is a reasonable endpoint (from a ‘regulatory’ 
viewpoint) for keeping the level of false negatives (i.e., incorrect labeling of bioactive 
NPs as inactive) low. The establishment of a quantitative nano-SAR applicability 
domain is demonstrated, making use of a probability density with the H4 class 
defi nition and naive Bayesian classifi er (NBC) model (with spin-lattice relaxivity 
and zeta potential as descriptors). Decision boundaries are determined for the above 
H4/NBC nano-SAR for different acceptance levels of false negative to false positive 
predictions, illustrating a practical approach that may assist in regulatory decision 
making with a consideration of reducing the likelihood of identifying bioactive NPs 
as being inactive. 

Bioactivity Screening

  Dr. R. Liu, Prof. R. Rallo, Prof. Y. Cohen
Center for the Environmental Implications of Nanotechnology
California Nanosystems Institute
University of California
Los Angeles, CA 90095, USA
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(67%) of the NPs in Clusters I and III (Figure S1(c), SI). In 
contrast, NPs in Cluster II, which contained the two ‘safe 
NPs’ (NP24 and NP25) approved for human uses, [  54  ]  had a 
relatively small number of hits (N hit   <  4). Therefore, it may 
be reasonable to explore the possibility of a cluster based 
class defi nition (CLU), where Cluster II defi nes an inactive 
NPs category or “safe” class; whereas the remaining clusters 
(Cluster I and III) defi ne the active class. 

 For each class defi nition (designated as H i , where  i  is the 
number of hits in the class defi nition, or CLU), nano-SARs 
were built with all the possible combinations (15 subsets) of 
the four descriptors: primary size, zeta potential, spin-lattice 
relaxivity (R1) and spin-spin relaxivity (R2). A range of 

different nano-SARs were built with naive Bayesian classi-
fi er (NBC), logistic regression (LGR), linear discriminant 
analysis (LDA), and the nearest neighbor (NN) (see Experi-
mental Section). Performance of the nano-SARs was assessed 
via repeated cross-validation that averaged 1000 rounds of 
5-fold cross-validation [  61  ]  where the balanced classifi cation 
accuracy [  62  ]  was used as the performance metric (see Experi-
mental Section). 

 The classifi cation accuracy for the best performing nano-
SAR, among the above four classifi cation models, for each 
class defi nition in the range of H1-H7 and CLU is shown in 
 Figure    4  , with the most suitable descriptors identifi ed for each 
nano-SAR (i.e., the descriptors that yield the best nano-SAR 

     Figure  2 .     Biological activities (expressed as SNR) of 44 iron oxide core NPs from three groups (cross-linked iron oxide based NPs (CLIO), pseudocaged 
NPs (PNP), and monocrystalline iron oxide NPs (MION)) profi led based on 64 cell response measures (four cell types (AO: aorta endothelial, SM: 
vascular smooth muscle, HEP: hepatocyte, and MP: monocyte/macrophage)  ×  four assays (Apo: apoptosis, Mito: mitochondrial potential, Red: 
reducing equivalents, and ATP: ATP content)  ×  four concentrations (0.01, 0.03, 0.1, and 0.3 (mg/mL Fe); identifi ed by the widgets).  

     Figure  3 .     Number of hits identifi ed from the HTS bioactivity profi les.  
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performance) reported in Table S2 (SI). Inspection of the 
nano-SARs that performed with classifi cation accuracy  ≥ 70% 
(17 nano-SARs; Table S2, SI) revealed that, of the four nano-
SAR descriptors, NP primary size, R1, R2, and zeta potential 
appeared in 4, 12, 8, and 4 of the models, respectively. From 
the viewpoint of classifi cation accuracy, there are different 
combinations of descriptors that can provide nano-SARs of 
similar level of performance. Although examination of the 
different nano-SARs (Table S2, SI) suggests that R1 is the 
most suitable descriptor, this should not be taken to imply 
that NP size and R2 are less important. In fact, the Spear-
man’s rank correlation coeffi cients [  63  ]  of 0.51 and 0.61 with 
respect to the correlation of R1 and R2, respectively, with 
particle size are consistent with the indication that that larger 
particles have higher relaxivities. [  64  ]  There is also a strong 
correlation between R1 and R2 relaxivities (Spearman’s rank 
correlation coeffi cient of 0.91), which has been reported in 
the literature. [  65  ]  It is noted that, within the size and level 
of heterogeneity of the present dataset, it was not feasible 
to ascertain a greater importance of R1 relative to R2. The 
selection of zeta potential should not be surprising since the 
degree of aggregation of NPs is strongly infl uenced by their 
surface charge [  66–68  ]  which could infl uence cell-particle inter-
actions and/or bioavailability. [  69–72  ]   

 It is apparent that the class defi nitions H4-H6 and CLU 
enabled the construction of nano-SARs with a classifi cation 
accuracy  > 75% (except for NN based nano-SARs). The best 
performing nano-SARs, based on the CLU as the endpoint, 
were obtained with classifi cation accuracy of 81.6% with the 
NBC model and somewhat lower accuracy (72.0 − 74.9%) 
for the LGR, LDA and NN models. It was also noted that 
LGR and LDA provided inferior classifi cation accuracy for 
CLU relative to nano-SARs developed based on the H4-H6 
class defi nitions, using these same model building methods. 
Although the above analysis suggests that identifi cation 
and use of class defi nitions derived from SOM analysis (i.e., 
CLU) may appear as a rational approach, caution must be 

exercised when using CLU as an endpoint for nano-SARs. 
For example, for the present dataset, Cluster II (i.e., inactive 
category) grouped only inactive NPs whose activity patterns 
were similar to NP24 and NP25. At the same time, it is pos-
sible for other inactive NPs of different bioactivity patterns 
or for which there were no identifi ed hits (e.g., NP5 in Cluster 
III) to be classifi ed with clusters other than the declared ‘safe’ 
class (i.e., Cluster II). Therefore, one may argue that the CLU 
endpoint could result in a class defi nition that could lead to 
false identifi cation of inactive NPs as bioactive. 

 The classifi cation accuracies were comparable for the dif-
ferent nano-SARs developed with class defi nitions H4-H6. 
However, the acceptability of a particular nano-SAR end-
point (i.e., class defi nition) should not be dictated solely 
based on nano-SAR accuracy but also determined on the 
intended nano-SAR use. For example, the classifi cation-based 
nano-SAR can be simply utilized to aid regulators/decision 
makers to assess the potential toxicity or bioactivity of NPs. 
Therefore, it is important to minimize false-negative labeling 
(i.e., incorrectly identifying a bioactive NP as being inactive). 
With class labels defi ned by an increasing number of hits, 
the risk of false-positive labeling would decrease at the cost 
of increased risk of false-negative labeling. In other words, 
with increased number of hits that defi ne a class label, fewer 
NPs would be identifi ed as being bioactive. As is evident in 
Figure  4 , class defi nitions H4-H6 all seem to be of similar 
classifi cation performance, albeit with consistently lower per-
formance for the NN based nano-SARs. If the purpose of 
the nano-SAR is to provide more reliable screening identi-
fi cation of bioactive NPs, then reduced level of false-positive 
labeling would be required, in this case class labels H5 and 
H6 may be preferable to H4. However, as elaborated in the 
Materials and Methods Section, the H4 class defi nition was 
deemed to be a reasonable endpoint choice for a nano-SAR 
that reduces the level of false negative labeling. Zeta poten-
tial and R1 relaxivity were identifi ed as the two most suitable 
descriptors for the H4/NBC nano-SAR. This nano-SAR had 

     Figure  4 .     Highest balanced classifi cation accuracies of the best performing nano-SARs for different class defi nitions (H1-H7 based on hit-
identifi cation and CLU defi ned with SOM-based consensus clustering) developed with four different classifi cation models (i.e., NBC, LGR, LDA 
and NN).  
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a balanced classifi cation accuracy of 78.1% (assessed via a 
repeated cross-validation that averaged 1000 rounds of 5-fold 
cross-validation). A twenty round Y-randomization (see 
Materials and Methods Section) yielded an averaged classifi -
cation accuracy of 46.25% which is signifi cantly less than the 
H4/NBC nano-SAR (78.1%), validating that this latter model 
is not ‘chance’ correlation. 

 The H4/NBC nano-SAR quantifi es the probabilities of 
a NP  x  ( =  [ x  1 ,  x  2 ];  x  1  - R1 relaxivity and  x  2  - zeta potential) 
belonging to the bioactive class (T) or inactive class (N) 
as P(T |  x )  =   p ( x  | T)P(T)/ p ( x ) and P(N |  x )  =   p ( x  | N)P(N)/ p ( x ) 
(Bayes’ theorem), [  73  ,  74  ]  respectively. Analysis of the H4/NBC 
nano-SAR ( Figure    5  ) indicates that NPs are more likely to 
be inactive (i.e., P(T |  x ) is less than P(N |  x )) for high R1 relax-
ivity and large negative zeta potential. Another interesting 
observation is that there is a higher likelihood of fi nding bio-
active NPs at zeta potential above  ∼  − 25 mV. It is noted that 
P(T |  x )-P(N |  x )  =  0 defi nes the classifi cation boundary, which 
minimizes the overall classifi cation error, as depicted for the 
H4/NBC nano-SAR in the color plot of P(T |  x )-P(N |  x ) shown 
in Figure  5  with respect to the two descriptors (R1 relax-
ivity and zeta potential). Inside the classifi cation boundary 
P(T |  x ) > P(N |  x ) and NP  x  is assigned to bioactive class (T), 
while outside the classifi cation boundary it is assigned to the 
inactive class (N). In the above analysis, the probability den-
sity functions for active ( p ( x  | T)) and inactive NPs ( p ( x  | N)), 
needed for the determination of P(T |  x ) and P(N |  x ), were cal-
culated based on the assumption that the nano-SAR model 
descriptors are independent and the NPs are normally dis-
tributed with respect to each descriptor, [  73  ,  74  ]  resulting in the 
following expressions:

 

p(x|T) = 3.37 × 10−3 × exp
[
−6.05 × 10−3 × (x1 − 8.33)2

−18.50 × 10−3 × (x2 + 6.79)2]
  (1)   

 

p(x|N) = 1.91 × 10−3 × exp
[
−6.89 × 10−3 × (x1 − 21.04)2

−5.20 × 10−3 × (x2 + 9.91)2]
  (2)     

 Also, for the H4 endpoint P(T)  =  0.45 and P(N)  =  0.55 
as calculated from the proportions of active and inactive 
NPs. Given the above, the particular applicability domain 
( Figure    6  ), which is enclosed by the indicated contour 
( p ( x )  =  0.25  ×  10  − 3 ), was selected such that it covers 80% of 
the NPs from the population represented by the original NP 
dataset. In the above representation, a nanoparticle outside 
the applicability domain is less likely (i.e., with at most a 
20% possibility) to be from the population of the original 
NP dataset. In other words, more reliable classifi cation can 
be achieved for NPs that are inside the applicability domain 
since there is at least 80% confi dence that such NP is suit-
ably represented by the original NP dataset.  

 The posterior class probabilities (P(T |  x ) and P(N |  x )) can 
provide information in support of regulatory decisions (e.g., 
regarding NP toxicity) under different acceptance levels of 
false negative (FN) relative to false positive (FP) classifi ca-
tions. Accordingly, one can establish a decision boundary 

set by P(T |  x )L FN -P(N |  x )L FP   =  0 (see Experimental Section), 
where L FN  and L FP  are the penalties for false negative and 
false positive classifi cations, respectively. For example, the 
decision boundaries corresponding to L FN :L FP   =  4:1 and 9:1 
are shown in Figure  5  in addition to the special of the clas-
sifi cation boundary (i.e., L FN :L FP   =  1:1). As seen in Figure  5 , 
increasing the penalty of accepting false negatives shifts the 
decision boundary toward higher R1 relaxivity and thus 
increased false positives. It is also apparent that the deci-
sion boundary for L FN :L FP   =  4:1 is free of false negatives and 
thus may be more acceptable from a regulatory viewpoint. 
In contrast, the decision boundary for L FN :L FP   =  9:1 may 
be considered as too conservative as it would lead to more 
false positives without reduction of false negative. The above 
illustration highlights the importance of arriving at acceptable 
decision boundaries by carefully tuning the ratio of L FN :L FP  
for the specifi c problem under consideration.  

  3. Conclusion 
 A classifi cation nano-SAR development process was pre-
sented, based on a dataset of 44 iron oxide core NPs used 
for molecular imaging and nano-sensing. It was shown that 
statistically meaningful NP bioactivity class defi nitions (i.e., 
endpoints), for labeling the NPs as bioactive/inactive, can be 
derived from multiparametric bioactivity assays over four 
different cell lines experiments. Using multiparametric HTS 
bioactivity response profi les for the different NPs, endpoints 

     Figure  5 .     Difference between the probabilities of a NP being active 
and being inactive (i.e., P(T |  x )-P(N |  x )). The three curves identify the 
decision/classifi cation boundaries corresponding to different penalties 
of acceptance of false negative to false positive predictions (i.e., L FN :L FP ). 
Note L FN :L FP   =  1:1, where P(T | x)-P(N | x)  =  0, identifi es the classifi cation 
boundary.  
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a balanced classifi cation accuracy of 78.1% (assessed via a 
repeated cross-validation that averaged 1000 rounds of 5-fold 
cross-validation). A twenty round Y-randomization (see 
Materials and Methods Section) yielded an averaged classifi -
cation accuracy of 46.25% which is signifi cantly less than the 
H4/NBC nano-SAR (78.1%), validating that this latter model 
is not ‘chance’ correlation. 

 The H4/NBC nano-SAR quantifi es the probabilities of 
a NP  x  ( =  [ x  1 ,  x  2 ];  x  1  - R1 relaxivity and  x  2  - zeta potential) 
belonging to the bioactive class (T) or inactive class (N) 
as P(T |  x )  =   p ( x  | T)P(T)/ p ( x ) and P(N |  x )  =   p ( x  | N)P(N)/ p ( x ) 
(Bayes’ theorem), [  73  ,  74  ]  respectively. Analysis of the H4/NBC 
nano-SAR ( Figure    5  ) indicates that NPs are more likely to 
be inactive (i.e., P(T |  x ) is less than P(N |  x )) for high R1 relax-
ivity and large negative zeta potential. Another interesting 
observation is that there is a higher likelihood of fi nding bio-
active NPs at zeta potential above  ∼  − 25 mV. It is noted that 
P(T |  x )-P(N |  x )  =  0 defi nes the classifi cation boundary, which 
minimizes the overall classifi cation error, as depicted for the 
H4/NBC nano-SAR in the color plot of P(T |  x )-P(N |  x ) shown 
in Figure  5  with respect to the two descriptors (R1 relax-
ivity and zeta potential). Inside the classifi cation boundary 
P(T |  x ) > P(N |  x ) and NP  x  is assigned to bioactive class (T), 
while outside the classifi cation boundary it is assigned to the 
inactive class (N). In the above analysis, the probability den-
sity functions for active ( p ( x  | T)) and inactive NPs ( p ( x  | N)), 
needed for the determination of P(T |  x ) and P(N |  x ), were cal-
culated based on the assumption that the nano-SAR model 
descriptors are independent and the NPs are normally dis-
tributed with respect to each descriptor, [  73  ,  74  ]  resulting in the 
following expressions:

 

p(x|T) = 3.37 × 10−3 × exp
[
−6.05 × 10−3 × (x1 − 8.33)2

−18.50 × 10−3 × (x2 + 6.79)2]
  (1)   

 

p(x|N) = 1.91 × 10−3 × exp
[
−6.89 × 10−3 × (x1 − 21.04)2

−5.20 × 10−3 × (x2 + 9.91)2]
  (2)     

 Also, for the H4 endpoint P(T)  =  0.45 and P(N)  =  0.55 
as calculated from the proportions of active and inactive 
NPs. Given the above, the particular applicability domain 
( Figure    6  ), which is enclosed by the indicated contour 
( p ( x )  =  0.25  ×  10  − 3 ), was selected such that it covers 80% of 
the NPs from the population represented by the original NP 
dataset. In the above representation, a nanoparticle outside 
the applicability domain is less likely (i.e., with at most a 
20% possibility) to be from the population of the original 
NP dataset. In other words, more reliable classifi cation can 
be achieved for NPs that are inside the applicability domain 
since there is at least 80% confi dence that such NP is suit-
ably represented by the original NP dataset.  

 The posterior class probabilities (P(T |  x ) and P(N |  x )) can 
provide information in support of regulatory decisions (e.g., 
regarding NP toxicity) under different acceptance levels of 
false negative (FN) relative to false positive (FP) classifi ca-
tions. Accordingly, one can establish a decision boundary 

set by P(T |  x )L FN -P(N |  x )L FP   =  0 (see Experimental Section), 
where L FN  and L FP  are the penalties for false negative and 
false positive classifi cations, respectively. For example, the 
decision boundaries corresponding to L FN :L FP   =  4:1 and 9:1 
are shown in Figure  5  in addition to the special of the clas-
sifi cation boundary (i.e., L FN :L FP   =  1:1). As seen in Figure  5 , 
increasing the penalty of accepting false negatives shifts the 
decision boundary toward higher R1 relaxivity and thus 
increased false positives. It is also apparent that the deci-
sion boundary for L FN :L FP   =  4:1 is free of false negatives and 
thus may be more acceptable from a regulatory viewpoint. 
In contrast, the decision boundary for L FN :L FP   =  9:1 may 
be considered as too conservative as it would lead to more 
false positives without reduction of false negative. The above 
illustration highlights the importance of arriving at acceptable 
decision boundaries by carefully tuning the ratio of L FN :L FP  
for the specifi c problem under consideration.  

  3. Conclusion 
 A classifi cation nano-SAR development process was pre-
sented, based on a dataset of 44 iron oxide core NPs used 
for molecular imaging and nano-sensing. It was shown that 
statistically meaningful NP bioactivity class defi nitions (i.e., 
endpoints), for labeling the NPs as bioactive/inactive, can be 
derived from multiparametric bioactivity assays over four 
different cell lines experiments. Using multiparametric HTS 
bioactivity response profi les for the different NPs, endpoints 

     Figure  5 .     Difference between the probabilities of a NP being active 
and being inactive (i.e., P(T |  x )-P(N |  x )). The three curves identify the 
decision/classifi cation boundaries corresponding to different penalties 
of acceptance of false negative to false positive predictions (i.e., L FN :L FP ). 
Note L FN :L FP   =  1:1, where P(T | x)-P(N | x)  =  0, identifi es the classifi cation 
boundary.  

small 2013, 9, No. 9–10, 1842–1852

R. Liu et al.

1848 www.small-journal.com

full papers

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

for nano-SAR development were developed using both hit 
identifi cation analysis and Self-Organizing Map (SOM) based 
consensus clustering. Class defi nitions based on SOM clusters 
(CLU) resulted in a defi nition of a ‘safe’ NP class that was 
consistent with the hits based defi nition of a safe class. How-
ever, one should be cautious since the use of a SOM based 
CLU class defi nition could lead to false positive labeling (i.e., 
identifi cation of inactive NPs as bioactive). 

 Nano-SARs with four basic NP descriptors (primary size, 
spin-lattice (R1) and spin-spin (R2) relaxivities, and zeta 
potential) were developed demonstrating that high clas-
sifi cation accuracy ( > 78%) can be obtained with different 
descriptor combinations. 

 Analysis of nano-SAR performance, for the different 
class defi nitions, suggested that H4 (i.e., class of with at least 
four hits) was a reasonable endpoint (from a regulatory view-
point) for keeping the level of false negatives (i.e., incorrect 
labeling a bioactive NP as inactive) low. However, assessment 
of the suitability of any selected nano-SAR must quantify its 
applicability domain which in the present analysis was dem-
onstrated for the nano-SAR based on the NBC. 

 The H4/NBC nano-SAR, with R1 relaxivity and zeta poten-
tial as descriptors, had the highest classifi cation performance 
among those nano-SARs built with the H4 class defi nition. 
Moreover, the probabilistic virtue of NBC enabled quantifi ca-
tion of both the probability of a NP being bioactive and the 
probability density function of the NP dataset. Accordingly, 
it was shown that an applicability domain can be constructed 
for the nano-SAR to assess if a new NP is represented by the 
original NP dataset within a prescribed confi dence level. In 

other words, nano-SAR predictions would be considered reli-
able, within the prescribed confi dence level, only if the NP of 
interest falls within the applicability domain boundary. Given 
that there is a degree of uncertainty in both the data and 
derived models, it is essential that reasonable decision bound-
aries are considered when using nano-SARs for regulatory 
applications. Accordingly, with the NBC based nano-SAR one 
can establish decision boundaries corresponding to different 
ratios of acceptance levels of false negative to false positive 
predictions. Decision makers can then select the regulatory 
acceptable decision boundary to reasonably limit the chance 
of identifying bioactive NPs as being inactive.  

  4. Experimental Section 
  Nano-SAR Development Workfl ow : The workfl ow for nano-

SAR development, validation, and application is summarized in 
Figure  1 . Classifi cation nano-SARs were developed based on a 
biological endpoint that is based on cell responses from multiple 
assays over a thirty fold concentration range. Nano-SAR develop-
ment was accomplished using a previously reported dataset on 
the biological activity (assessed based on four different biological 
assays) of four different cell types exposed to 44 NPs (at different 
concentration levels) used for molecular imaging and Nano-
sensing. [  54  ]  The NPs were fi rst categorized with respect to their 
biological response as determined from a range of measurements 
for four different assays. Using the set of previously reported NP 
descriptors, [  54  ]  a number of different nano-SARs were developed 
(using various descriptor subsets) and assessed, while also evalu-
ating the impact of the level of acceptance of false positives/nega-
tives with respect to the nano-SAR prediction. 

  Biological Activity Profi les and Physicochemical Descriptors 
of NPs : Nano-SAR development was based on available data [  54  ]  of 
the biological activities of NPs (primary size 20–74 nm) used for 
molecular imaging and nano-sensing. The 44 NPs were grouped 
into three categories [  54  ] : i) NP1-NP12, NP14-NP23 consisting of 
a super-paramagnetic iron oxide core and a covalently cross-
linked dextran coating (CLIO), ii) NP26-NP44 consisting of pseu-
docaged NPs (PNP) containing either superparamagnetic or para/
dia-magnetic iron oxide cores and a variety of polymer coatings, 
and iii) NP45-NP48 which include monocrystalline iron oxide NPs 
(MION) consisting of a superparamagnetic iron oxide core and an 
incomplete non-cross-linked dextran coating. The dataset provided 
measurements of biological response for four cell types (AO: aorta 
endothelial, SM: vascular smooth muscle, HEP: hepatocyte, and 
MP: monocyte/macrophage), exposed to the NPs at four concen-
trations (0.01, 0.03, 0.1, and 0.3 mg/mL Fe), determined based on 
four different assays (Apo: apoptosis, Mito: mitochondrial poten-
tial, Red: reducing equivalents, and ATP: ATP content). 

 The biological activities of the NPs were profi led by a vectorial 
metric of 64 components (4 cell types  ×  4 assays  ×  4 concentra-
tions) that refl ect different aspects of cellular physiology across a 
wide range of biological contexts. Quadruplicates of NPs and 172 
control wells treated with Phosphate Buffered Saline (PBS) alone 
were used in the reported HTS experiment. As a result, the HTS 
experiment provided data on  ∼ 24,000 wells reported as normal-
ized Signal-to-Noise ratio (SNR),  R NP    =  (  µ  NP  -  µ  PBS  )/  σ  PBS  , where   µ   and 
  σ   denotes mean and standard deviation, respectively. 

     Figure  6 .     Applicability domain (AD) of the developed nano-SAR.  p ( x ) 
(depicted in color) identifi es the probability density of the population 
represented by the original NP dataset. The area within the contour of 
 p ( x )  =  0.25  ×  10  − 3  outlines an area (i.e., the AD) that covers 80% of the 
NPs from the population of the original NP dataset.  
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Development of structure–activity relationship for
metal oxide nanoparticles†

Rong Liu,a Hai Yuan Zhang,a Zhao Xia Ji,a Robert Rallo,b Tian Xia,c

Chong Hyun Chang,a Andre Nelc and Yoram Cohen*ad

Nanomaterial structure–activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were
investigated using metrics based on dose–response analysis and consensus self-organizing map clustering.
The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human
bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39–
100 mg L!1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR
building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band
energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP
descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The
best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model
and of validated robustness, had a balanced classification accuracy of "94%. An applicability domain for
the present data was established with a reasonable confidence level of 80%. Given the potential role of
nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided
by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity
classification under different acceptance levels of false negative relative to false positive predictions.

1 Introduction

The generation of in vitro and in vivo toxicity characterization
data is essential for risk assessment and establishment of safe-
use of engineered nanomaterials (ENMs). However, this is a
formidable task given the expected growth in number and
diversity of ENMs.1 Therefore, in addition to experimental
toxicity studies, there is a need for in silico methods (i.e.,
computational approaches) that will support rapid toxicity
screenings.2,3 Accordingly, in recent years there have been
increased efforts to develop data-driven structure–activity rela-
tionships (SARs)4 for ENMs (i.e., nano-SARs)5–11 that correlate
their physicochemical properties12 with the observed bioactivity
(e.g., toxicity) of the exposed target receptors. It is noted that,
relative to SARs for chemicals,4 a small number of nano-SARs
have been proposed13–17 over the last ve years, relying on
modest size datasets (typically of the order of 10–100 different

ENMs) with the present cumulative toxicity datasets for "200
different ENMs.

The majority of published nano-SAR studies11,13–17 have
focused on metal oxide nanoparticles (NPs)13,15,16 that have high
commercial production volume.18 Among the eight recently
published nano-SAR studies, ve of the reported models clas-
sied a given NP as either toxic or non-toxic,13,14,16,17 while the
other three are linear/log-linear regression models of EC50 for
bacteria cytotoxicity,15 smooth cell apoptosis,11 and NP uptake,14

respectively. The above nano-SARs were developed based on
in vitro toxicity assessed for different cell lines and different
toxicity assays.13–16 NP descriptors included NP primary13,14,16

and aggregate13 size, zeta potential,13,14,17 concentration
measure (mass concentration13 and volume fraction16), relaxiv-
ities,14,17 energies/enthalpies (atomization energy16 and forma-
tion enthalpy of a gaseous cation of the same oxidation state as
in the metal oxide15). Previously developed nano-SARs11,13–16

have demonstrated that, to various levels of accuracy, NP
toxicity can be correlated with their physicochemical properties.
However, in order for nano-SARs to become acceptable as tools
for regulatory decision making and support safe-by-design
approaches to ENM development, decision boundaries and
applicability domain for developed nano-SARs must be derived
based on appropriate end point denitions.

A recent toxicity study19 for twenty-four metal oxide NPs has
provided a rich dataset and thus an opportunity for exploring
the nano-SAR development along with quantication of the
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that the formation and stability of hydratedmetal ions and their
redox potential47 in biological aqueous media may be key to
their impact on biological activity.48,49

In order to interpret nano-SAR predictions regarding the
likelihood that a NP may be classied as either toxic or non-
toxic, one can quantify the probability of NP x as being toxic
(i.e., P(T|x)) from the intrinsic probability function used in the
classicationmodel. Given that the SVM based nano-SARmodel
was of the highest performance among the different nano-SARs,
it was selected to demonstrate the relevance of establishing a
statistically meaningful applicability domain50 as well as deci-
sion boundaries.10,38 Intrinsic to the SVM model is the rela-
tionship between the classication probability and the
(discriminant) function that contains the model descriptors.38

Accordingly, based on the SVM model, the classication nano-
SAR takes the following form

P(T|x) ¼ 1/(1 + e"f(x)) (1)

where P(T|x) is the probability of NP x being toxic and f (x) is the
discriminant function,38 whereby a NP is classied as toxic if
f (x) > 0 (corresponding to P(T|x) > 0.5) and it is otherwise clas-
sied as being non-toxic (i.e., f(x) < 0, P(N|x) > 0.5). The
discriminant function of the best performing SVM based nano-
SAR (Table 1) is given by:

f ðxÞ ¼
X6

i¼1

ai e
"2
!
ðxi;1"x1Þ2þðxi;2"x2Þ2

"
þ b (2)

where x represents the NP identied by its normalized (in the
range of [0, 1]) descriptors vector [Z2/r, EC] (i.e., corresponding to
x1, x2), xi,1 and xi,2 refer to the normalized rst and second
descriptors corresponding to NPs (designated by subscript i)
identied as support vectors40 for the specic SVM based nano-
SAR. The weight factors40 (ai), for the identied support vectors,
were found to be represented by NPs i ¼ 1–6 (i.e., ZnO, Ni2O3,
Mn2O3, NiO, CeO2, and Fe2O3), with the corresponding values of
82.342, 128, 83.696, "70.471, "95.566, and "128, with b being
"10.888. The small number of support vectors indicates that
the SVM based nano-SAR is of low complexity and that it is not
an over-tted model.51 Moreover, the low complexity of the SVM
based nano-SAR was consistent with the SVM penalty factor
being of order 102 and the kernel width which was of order
unity.38

The resulting nano-SAR classication boundary (dened by
the contour of P(T|x)¼ P(N|x)¼ 0.5) is plotted in Fig. 3, whereby
NP bounded by this boundary is classied as toxic and those
outside are classied as non-toxic. The nano-SAR classication
boundary encompasses the range of EC & ["5.47, "3.71] eV and
Z2/r <&0.2 pm"2. In previous work,36 it has been postulated that
a conduction band energy (EC) within ["4.84, "4.12] eV (esti-
mated range of standard redox potential couples in biological
media) is suggestive of the potential for electron transfer
between cellular redox couples and NP surfaces (Fig. S5, ESI†).
Indeed, the present nano-SAR classication boundary spans the
above suggested redox potential range.36 However, two (ZnO
and CuO) of the seven toxic NPs fall outside, while the non-toxic
TiO2 is located inside the redox potential range. On the other

hand, for the SVM nano-SAR, which includes both EC and Z2/r,
all of the toxic and non-toxic NPs are correctly classied. As the
ionic index decreases (i.e., hydration enthalpy ("DHhyd)
decreases; see Fig. S6, ESI†) the probability of a metal oxide
being classied as toxic increases. This behavior is consistent
with studies on metal ion toxicity which suggested increased
transport across cell membranes for metal ions of lower
hydration energy (those considered to be “permeators”).49 In
this regard, it is noted that ZnO and CuO are classied as toxic
(Fig. 3) despite their EC being outside the suggested redox
potential range. It is also interesting to note that CoO, which is
inside the suggested redox potential range and has a low ionic
index (0.0615 pm"2), has the highest predictive probability of
being toxic (&94%) among the 23 metal oxide NPs. Overall, the
nano-SAR (Fig. 3) suggests that the probability of a metal oxide
NP being classied as toxic would increase if its EC is within or
close to the redox potential range and its metal ion ionic index
is in the low range.

2.3 Nano-SAR applicability domain and decision boundaries

In order to assess the domain of applicability50 for the above
nano-SAR (i.e., in terms of the range of the EC and Z2/r
descriptors), the probability density p(x) of the NP population to
which the original NP dataset belongs was determined (Mate-
rials and methods section) based on a kernel density esti-
mator.50,52 Given p(x), the applicability domain of the desired
level can be established. This is illustrated in Fig. 4 for an
applicability domain (indicated by the contour for p(x) ¼ 0.21)
that encompasses 80% of the NPs from the population repre-
sented by the original NP dataset. Therefore, nano-SAR predic-
tions for NPs within the applicability domain are at higher
condence, while for the above example, NPs outside the
applicability domain are less likely to belong to the population
of the original NP dataset (i.e., with at most 20% probability). In
principle, one can impose a higher probability of establishing

Fig. 3 Toxicity probability of NP (x) belonging to the toxic class (T) given by the
SVM based nano-SAR. The posterior toxicity probability P(T|x) is depicted by the
color scale in the descriptor space. The contour in the middle (i.e., P(T|x) ¼ 0.5)
defines the nano-SAR classification boundary, while the inner (P(T|x) ¼ 0.73) and
outer contours (P(T|x) ¼ 0.27) correspond to the decision boundaries for penalty
ratios of false negative relative to false positive predictions (i.e., LFN : LFP) set as
1 : 2.7 and 2.7 : 1, respectively.
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Support vectors:{ZnO, Ni2O3, Mn2O3, NiO, CeO2, Fe2O3}  

X2à	



X
1à
	





Application Domain Analysis 
- Optimal Prediction Region - 

that a new NP is a member of the original NP population.
However, this would decrease the size of the applicability
domain and correspondingly reduce the range of NPs (i.e., in
terms of their descriptor values) for which reliable predictions
can be made.

The class probabilities (P(T|x) and P(N|x)) can enable one to
quantify the likelihood of NP classication (i.e., toxic versus
non-toxic) under different acceptance levels of false negative
(FN) relative to false positive (FP) predictions. Accordingly, one
can establish a decision boundary set by P(T|x)LFN ! P(N|x)
LFP ¼ 0 (see Material and methods section), where LFN and LFP
are the penalties of acceptance of false negative and false
positive classications, respectively. For example, as shown in
Fig. 3, decision boundaries for LFN : LFP ¼ 1 : 2.7 and 2.7 : 1
correspond to the contours of P (T|x) ¼ 0.73 and 0.27 (i.e., f (x) ¼
#1 in the SVM model). Also shown is the decision boundary for
LFN : LFP ¼ 1 : 1 (i.e., the nano-SAR classication boundary)
which corresponds to an equal acceptance level of false negative
relative to false positive classications. Similar classication
boundary is observed for the qLGR based nano-SAR as
described in Fig. S7† (ESI). It is noted that as the penalty of
accepting false negatives increases, the decision boundary
shis toward high ionic index (or high hydration enthalpy
(!DHhyd); see Fig. S6, ESI†) thus, the probability of false nega-
tive predictions is reduced albeit at the cost of increased prob-
ability of false positive predictions. Clearly, an optimal LFN : LFP
ratio should be selected in order to arrive at acceptable decision
boundaries for a target nano-SAR, for specic applications (e.g.,
regulatory decisions regarding NP manufacturing, use or
disposal).

3 Conclusions

A classication nano-SAR was developed for metal oxide nano-
particles with a toxicity class denition derived based on both
dose–response analysis and consensus Self-Organizing Map
clustering. A series of nano-SARs were developed using a dataset
of twenty-four metal oxide nanoparticles that provided a

multiparametric toxicity prole for two different cell lines and
seven different toxicity assays over a concentration range of
0.39–100 mg L!1 and exposure time up to 24 h. Various nano-
SAR building models were evaluated with an initial pool of
thirty nanoparticle descriptors. The best performing nano-SAR
(built with support vector machine model) that was based on
two descriptors, namely conduction band energy (EC) and ionic
index (Z2/r), had a high classication accuracy of 93.74%. The
above descriptors are consistent with suggested toxicity mech-
anisms for metal oxide nanoparticles whereby: (a) their
conduction band energy is within the range of cellular redox
potential and thus could impact the generation of cellular
oxidative stress, and (b) the ionic index is a parameter used in
calculating the metal ion hydration energy, which is an indi-
cator of the ease of formation and stability of hydrated metal
ions and thus affect cation transport across cellular
membranes. The class probabilities provided by the nano-SAR
enabled the construction of decision boundaries with respect to
toxicity classication under different acceptance levels of false
negative relative to false positive predictions.

4 Materials and methods

Nano-SAR development followed a workow that included NP
toxicity inference and physicochemical characterization, model
development and validation, as well as nano-SAR applicability
domain and decision boundary analyses.16,17 A previously
reported toxicity dataset of twenty-four metal oxide NPs19 was
used for the nano-SAR development, which provided a multi-
parametric toxicity prole for each of the metal oxide NPs for
two different cell lines, seven different toxicity assays, concen-
tration range of 0.39–100 mg L!1 and exposure time of up to
24 h. The toxicity proles for the twenty-four NPs were analyzed
to arrive at a class denition (toxic versus non-toxic) for nano-
SAR development. In order to cover a wide range of physico-
chemical properties that might relate to toxicity, the NPs were
characterized by a set of thirty descriptors. The best performing
nano-SAR was then analyzed to determine its applicability
domain and decision boundaries corresponding to different
acceptance levels of false negative to false positive prediction.

4.1 NP toxicity data and processing

Nano-SAR development was based on a recently developed
dataset19 that provided measured toxicological responses of
twenty-four metal oxide NPs (over a concentration range of
0.39–100 mg L!1) on RAW 264.7 and BEAS-2B cell lines, using
both single parameter screening (SPS) assays (MTS, ATP and
LDH) and multi-parameter high-throughput screening (HTS)
assays (Mito, Fluo4, JC1, and PI over exposure time of 1–24 h).
The SPS and HTS measurements included triplicates and
quadruplicates, respectively, for each NP. Also, negative
controls (i.e., cells unexposed to NPs) were used in triplicates for
the SPS assays and thirty-two controls in each of the HTS plate
that was set for eight NPs. Data from SPS assays was in the form
of absorbance or luminescence, while the HTS assay data was
expressed as the percentage of affected cells.19 The complete

Fig. 4 Probability density (p(x)) of the population represented by the original NP
dataset. The area within the contour of p(x) ¼ 0.21 that outlines the applicability
domain (AD) covering 80% (i.e., p(x) ¼ 0.8) of the NPs from the population of the
original NP dataset.
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Abstract. The increasing utilization of high-throughput screening (HTS) in toxicity studies
of engineered nano-materials (ENMs) requires tools for rapid and reliable processing and
analyses of large HTS datasets. In order to meet this need, a web-based platform for HTS
data analyses tools (HDAT) was developed that provides statistical methods suitable for ENM
toxicity data. As a publicly available computational nanoinformatics infrastructure, HDAT
provides different plate normalization methods, various HTS summarization statistics, self-
organizing map (SOM)-based clustering analysis, and visualization of raw and processed
data using both heat map and SOM. HDAT has been successfully used in a number of HTS
studies of ENM toxicity, thereby enabling analysis of toxicity mechanisms and development
of structure–activity relationships for ENM toxicity. The online approach afforded by HDAT
should encourage standardization of and future advances in HTS as well as facilitate
convenient inter-laboratory comparisons of HTS datasets.

1. Introduction

Nano-sized materials are increasingly utilized as common elements in modern industrial products and
processes primarily due to their novel beneficial properties that arise at the nano-scale [1, 2]. At the same
time, there is growing concern that engineered nano-materials (ENMs) may have adverse impacts on the
environment and human health [3–12]. Given the rising public concern regarding the potential environmental
impact of ENMs, efforts are mounting to assess the potential releases, toxicity and thus associated impacts of
ENMs throughout their lifecycle [13–16]. In this regard, toxicity screening is critical for characterization of
the potential hazard of ENMs in order to provide information essential for risk assessment and establishment
of safe-use of ENMs [6, 14, 17–21]. However, the generation of toxicity data necessary to cope with the
expected growth in number and diversity of ENMs is a formidable task. In order to address the above challenge,
experimental approaches to high-throughput screening (HTS) of ENM toxicity [22–25] have been developed

Computational Science & Discovery 6 (2013) 014006 www.iop.org/journals/csd
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Preprocessing and data 
analysis software 

Available from: 
http://deim.urv.cat/~sgomez/multidendrograms.php 

Multidendrograms 

RapidMiner 5 Extension for 
Feature Selection 

Available from: 
http://rongliu.weebly.com/software.html 



Tool for automatic 
zebrafish embryo 

phenotyping 



Web tool for the integrated 
analysis of molecular signatures 

Accesible from: http://www.biocenit.cat 
 



Nanosafety Data Management System 

Features: 
 
•  Web-based application 
•  ISA-TAB-Nano validation 
•  Import/Export 
•  Ontology support 
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