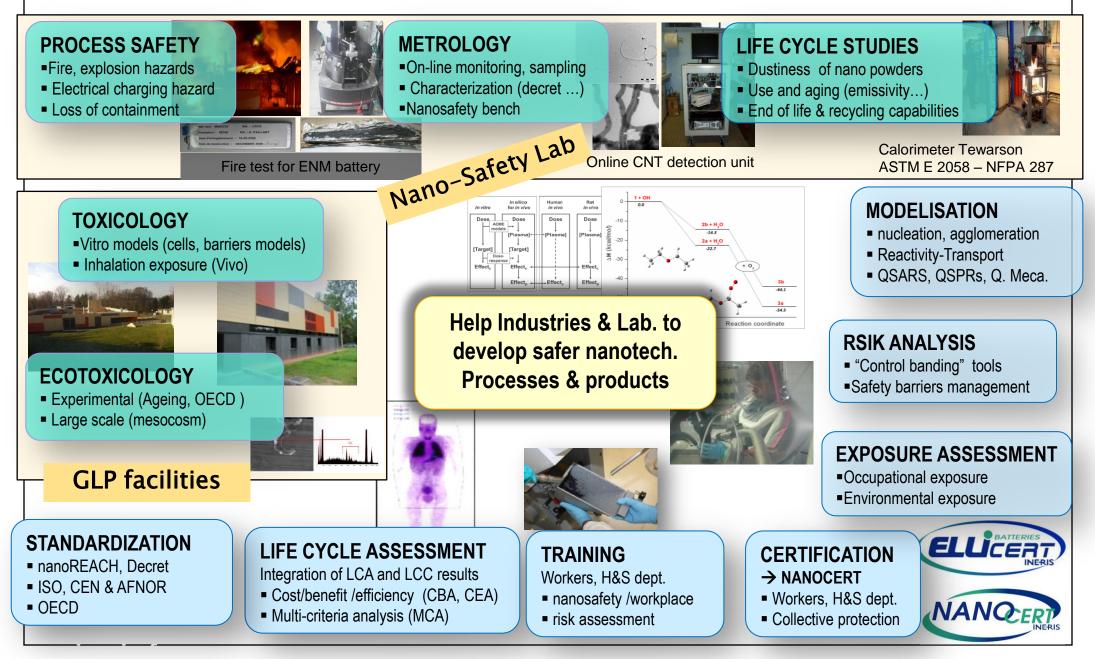
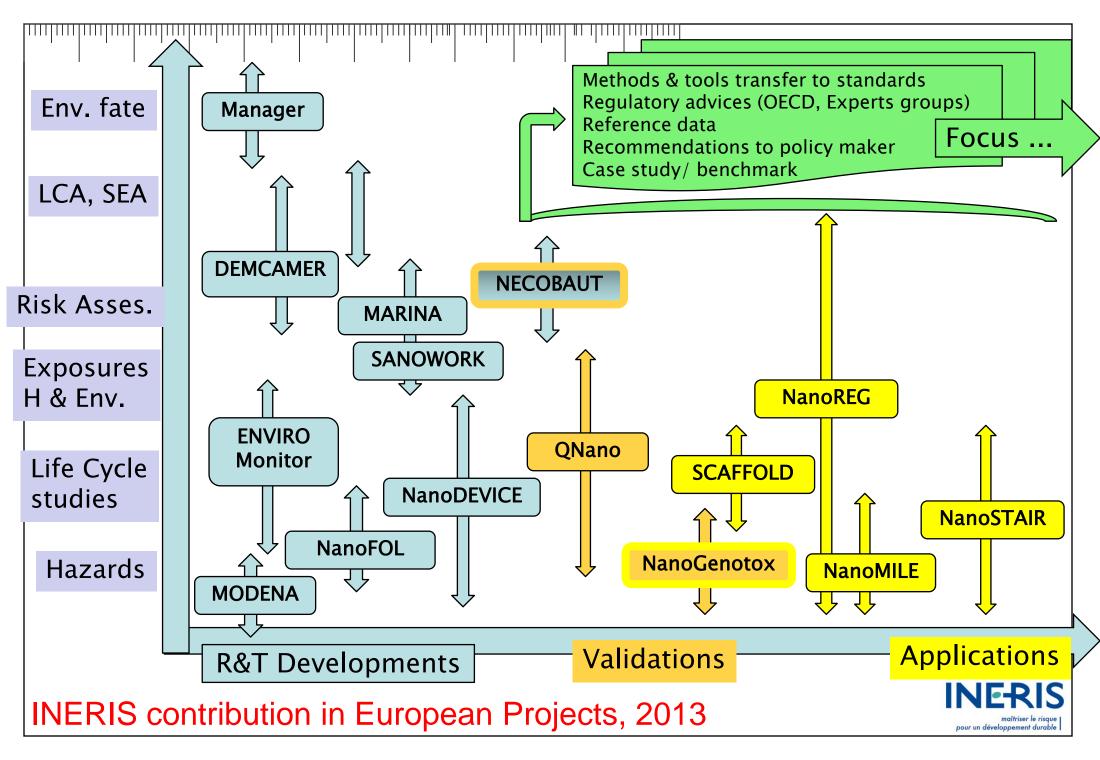


Link Research outputs to Standardization bodies for innovation objectives

Case of FP7 CSA nanoSTAIR


Dr. Hdr Emeric Frejafon Scientific Deputy, Chronic Division Head of the TaskForce on Nanotech Risk Assessment French National Institute for Industrial Environment and Risks

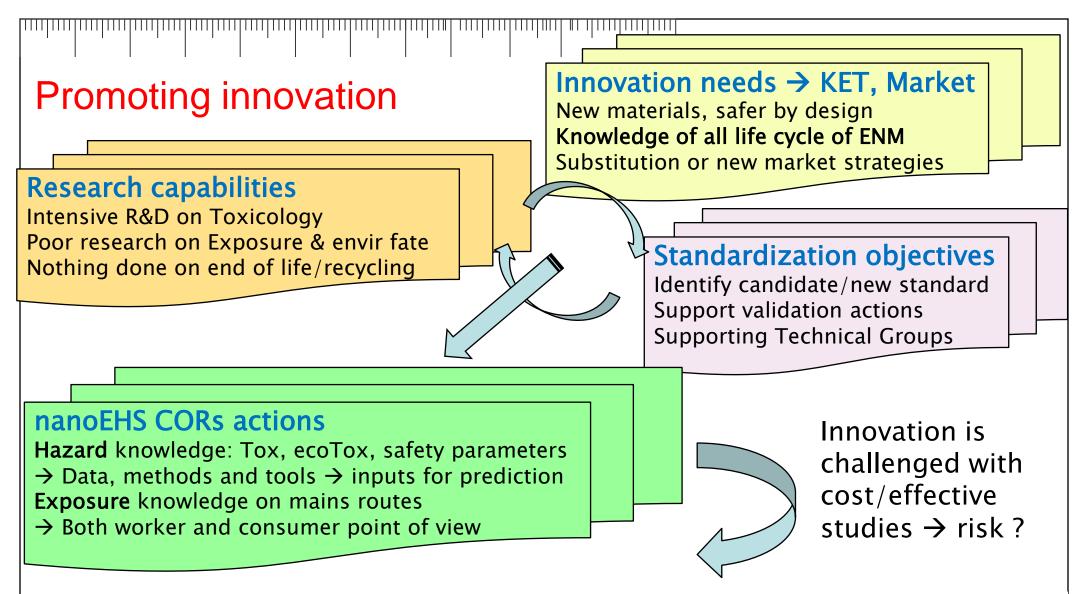


maîtriser le risque pour un développement durable

US-EU nanoEHS CORs, 3rd December 2013

INERIS activities related to Nanotechnology Risk Assessment

Creating link with standardization, why?


World Economic Forum in Davos 2007 :

- >The importance of technical standards was reported
- Standardization : also a tool for promoting innovation
- Research and innovation are to be more closely interlinked with standardization

Standardization related to the safety of NM

→ Support the spreading of good practices and rationalize the communication between the authorities, the industry and other stakeholders

? Focus on Hazard (intensive research) or Exposure (a regulatory concern) ? \rightarrow Both as barriers mean costs \rightarrow need to be adjusted to be competitive \rightarrow As effect on an existing market of a common new UN GHS nano code based on most hazardous ENM would be huge.

Standards activities can address US-EU nanoEHS in : ENM measurement infrastructure CORs

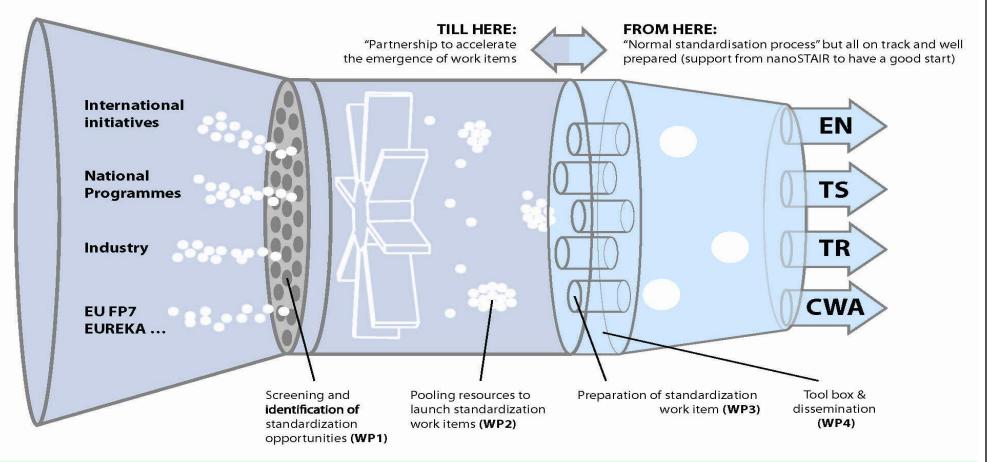
→ Define and validate metrics, methods, instruments & share best practice or ref data infrastructures (inhalation facility, metrology lab, mesocosm...)

ENM Toxicology, eco toxicology tests

- \rightarrow Develop or adapt & validate reference methods for main exposure routes
- Exposure during all life cycle (production, use, end of life, recycling)
- → Share & validate methods (emissivity, transfer, including aging if needed Risk assessment and management
- → adapt, share and validate methods on case studies → inputs for ISO → Up to risk assessment models (develop or adapt existing methods) Database, informatics and modeling :
- \rightarrow Define descriptors for grouping, prediction, built ref. data for benchmarking

We can find ideas (results) but the main problem is to link communities (Tox/ ecotox/ metrology, or research-industry-standardization, ...) and moreover to know if expression of needs can be understood and if it can fit research capabilities.

From Sept. 2012 to March 2014


Establishing a process and a platform to support standardization for nanotechnologies

Bringing research results to standardization

...a sustainable process and platform in the field of nanotechnologies to support the transfer of knowledge gained through research to documentary standards in the context of the STAIR approach

nanoSTAIR, the Turbine concept !!! Bridges between stakeholders TOPICS FOR STANDARD COMING FROM R&D PROJECTS

All nanotechnologies & especially : "Characterization of and exposure from MNMs" and "Health, Safety & Environment"

> maîtriser le risque pour un développement durable

List of targets : TCs - case of the mandate M/461

- CEN/TC 137 Assessment of workplace exposure to chemical & biological agents
- CEN/TC 138 Non-destructive testing
- CEN/TC 162 Protective clothing including hand and arm protection....
- CEN/TC 195 Air filters for general air cleaning
- CEN/TC 230 Water analysis
- CEN/TC 352 Nanotechnologies

ISO/TC 24/SC4 Particle characterization

- ISO/TC 142 Cleaning equipment for air and other gases
- ISO/TC 194 Biological evaluation of medical devices
- ISO/TC 201 Surface chemical analysis
- ISO/TC 202 Microbeam analysis
- ISO/TC 209 Clean room and safe environment
- ISO/TC 229 Nanotechnologies

IEC/TC113Nanotechnology std for electrical and electronic products and systems

nanoSTAIR official links with research & standardization activities : Official liaison with CEN T 352 In charge of NSC WG 7, Subgroup on Standardization Link with QNANO expert group on standardization Link with SIINN ERANET, national funding agencies

Already working \rightarrow Check made on canidates

Doc. #	Topic of research candidate	Type of candidate			
ACOSTA	Atomic Force Microscopy Based Micro/Nanomanipulation	PhD Thesis ^[10]			
BLEEKER	Considerations on the EU definition of a nanomaterial: Science to support policy making.	Paper of Scientific journal ^[11]			
MOTZKUS	Size characterization of airborne SiO2 nanoparticles with on-line and off- line measurement techniques: an interlaboratory comparison study	Paper in JNR - Springer (source: VAMAS : J.M. Aublant)			
DENG	Study on RAFT Polymerization and Nano-structured Hybrid System of POSS macromers	PhD Thesis ^[13]			
UKNSPG	Working Safely with Nanomaterials in Research & Development	NanoSafety Cluster document ^[14]			
SCOPE OF GUIDANCE	Facilitating the safety evaluation of manufactured nanomaterials by characterising their potential genotoxic hazard	NANOGENOTOX Scientific Report ^[15] .			
RIEDEKER	Experimental protocol validation to design a standard using 2'7- dichlorodihydrofluorescin (DCFH) for nanoparticle oxidative reactivity detection	Paper in grey literature (source: M. Riedeker) ^[16] .			
KOIVISTO	SOURCE SPECIFIC RISK ASSESSMENT OF INDOOR AEROSOL PARTICLES	PhD Thesis - KOIVISTO			
LYNCH	Labelling nanoparticles with non-radioactive isotopes	Paper of scientific journal - Lynch			
NANODEVICE	Hydrochemical reactivity and biodurability of nanoparticles used for toxicity studies in NANODEVICE	Project report-NANODEVICE			
NANOGENOTOX	Hydrochemical reactivity, solubility, and biodurability of NANOGENOTOX nanomaterials	Project Report-NANOGENOTOX			
HINAMOX	Data on metal leaching and dissolution rates of NPs under different physiological conditions	Project Report-HINAMOX			
ENPRA	Physical-chemical Data for QSAR-like modelling -In vitro sedimentation rates, dissolution and hydrochemical reactivity of the ENPRA nanomaterials	Project report- ENPRA			
		maîtriser le risque pour un développement durable			

Examples of evaluation of distances to target

	TC24-				TC229-	TC229-		TC229-	
	SC4	TC201	TC202	TC209	WG1	WG2	WG3	WG4	
Acosta	0,76	0,73	0,85	0,94	0,88	0,91	0,82	0,82	New Topic
Bleeker	0,56	0,75	0,75	0,81	0,63	0,69	0,31	0,75	Close
Motzkus	0,52	0,65	0,70	0,78	0,96	0,65	0,74	0,78	Quite nev
Deng	0,82	0,76	0,88	0,91	0,85	0,82	0,76	0,85	New topic
UKNSPG	0,83	0,78	0,91	0,83	0,87	0,87	0,22	0,87	Close
NanoGenotox	0,65	0,70	0,70	0,75	0,95	0,80	0,60	0,75	Quite nev
Riedeker	0,59	0,53	0,71	0,71	0,88	0,71	0,53	0,71	Quite nev
Lynch	0,80	0,60	0,85	0,95	0,95	0,75	0,75	0,85	Quite nev
Koivisto	0,68	0,74	0,84	0,79	0,95	0,89	0,42	0,89	Close
NANODEVICE	0,67	0,57	0,71	0,81	0,81	0,62	0,62	0,76	Quite nev
Nanogenotox	0,76	0,76	0,94	0,82	0,94	0,82	0,76	0,82	New topic
HINAMOX	0,47	0,53	0,71	0,65	0,82	0,71	0,53	0,65	Quite nev
ENPRA	0,58	0,63	0,74	0,68	0,84	0,79	0,58	0,68	Quite nev

Distance between a candidate and targets \rightarrow matching is fine when distance is short to one TC but still need the expert judgment \rightarrow Can help but not replace the expert evaluation

nanoSTAIR outputs and perspectives in US-EU nanoEHS

Web applet Giving closest TC(s) to the candidate (document analyzed)

Give information about the person to contact to interact with the TC

- Prepare inputs to standardization: recommandation to submit a New Work Item Proposal in the right TC SC or WG
- Support for the organisation of the contributions and linkage with other teams able to contribute by a NSB (DIN during the project)
- Support for the secretariat for NWIP (DIN during the project)

nanoSTAIR can be Extend to other TCs (eg. 292 waste) or ASTM
Ontology can be adjusted, weight can be affected to keywords
It can be adapted to analyze distance of a project or a result (document)
with expressions of needs or requests defined by CORs (eg. Keywords)
→ This action can be proposed through joined action or a joined agenda and
it can be made in partnership with a dedicated CORs group

Conclusions nanoSTAIR \rightarrow an example of a living procedure and a set of tools to support

transfer of research results to standardization

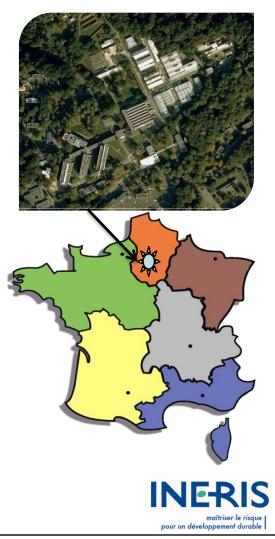
Perspectives within the US-EU CORs :

□ nanoSTAIR : extend targets & check periodically for some projects & to have standardization seminar to support exploitation of results. Include in next call the need to define a standardization strategy if the TRL is above 5 & that the nanoSTAIR can help to prepare standardization strategies

□ nanoEHS standardization activities : specific seminars in each CORs group but if some actions are requested (eg validate a method), who will pay ?
 → Through a joined Research agenda between EU and US
 → Extend Mandates to new work items in both CEN (eg M461) and ASTM
 → Make existing standards available to research community to increase confidence on results → Standards access policies

□ Promote pre-standardization activities eg. voluntary certification scheme (eg. NanoCERT MTD include a validated method to certify protection efficiency of collective protective system → download the method at www.ineris.fr) **INE-RIS**

INERIS:


Public Body having industrial activities, delivering an assessment based on the experimental approach, the modeling and the knowledge of the industry

- Long-time experience of the industrial world (> 60 years)
- under the trusteeship of the Ministry in charge of Ecology
- Annual budget ~70 M€, staff of 600 (350 engineers & researchers
- 50 PhD students & 15 post-doctoral fellowships
- Full scale tests facilities (animal facilities, mesocosm, labs ...)
- Headquarters extend to 50 ha , 25 000 m² of laboratories

Synergy between services for private customers, research activities and technical support for regulators

Dr. Hdr. Emeric Frejafon

Scientific Deputy, Chronic Risk Division Heard of the TaskFoce on nanotechnology risk assessment CEN TC 352 WG1 convenor, WBCSD TIP Expert Group Mail. <u>Emeric.frejafon@ineris.fr</u> Tel. +33 3 44 55 63 13 / Mob. +33 6 11 24 01 1

