NANOMATERIALREGISTRY

Kimberly Guzan, Karmann Mills

RTI International
June 7, 2013

NANOMATERIAL REGISTRY

Comprehensively curated, validated data on a scale suitable for decision making

Web Address:

www.nanomaterialregistry.org

Funded by:

NANOMATERIAL INFORMATION

The Scope of the Registry

Validated both programmatically and by a team of scientist and

 Integrated through controlled vocabulary and data format

 Relevant a growing body of up-to-date data is available to the public

Trends in Data

PROPERTIES

Can be reported as various "measurement types".

Can be measured by different techniques and instruments.

Measurements are impacted by technique/instrument parameters.

▶ 20+ Measurement types are curated in the Registry for Particle Size

 Measurements are reported without technique

► Tracking the parameters validates research data and enables analysis

Minimal Information About Nanomaterials for Physico-Chemical Characteristics

Minimal Information = PCC data + Metadata

Minimal Information About Nanomaterials for Physico-Chemical Characteristics

Current Characterization Profile for NR Records

Particle Size Techniques

Parameters for Dynamic Light Scattering

- Other DLS parameters that are collected, but not shown here, include scattering angle, wave length, and index of refraction
- Solvent Type is the most frequently reported parameter for DLS

Parameters for Dynamic Light Scattering

DATA IN THE REGISTRY

Examples of curated records

Envir	onmer	ntal/E	colog	ical
			_	

Medical Applications

Toxicology

Biological Impact

In the Registry	Study	Endpoints
NR1474, 1475	Natural Organic Matter Alters Biofilm Tolerance to Silver Nanoparticles and Dissolved Silver	Cytotoxicity
NR951, NR966	Dendrimer-Functionalized Iron Oxide Nanoparticles for Specific Targeting and Imaging of Cancer Cells	Viability
NR1010, NR1011	Assessment of the toxicity of silver nanoparticles in vitro: A mitochondrial perspective	Pharmacodynamics
NR1126, NR1129	Characterization of silver and effects on gene expression using an in-vitro intestinal epithelium co-culture model	Cytotoxicity; gene, protein and enzyme expression, cellular uptake, biotransformation

NANOMATERIAL STUDY

Linking Measurements and Impacts

STUDY TYPE

Long-Term Transformation and Fate of Manufactured Ag Nanoparticles in a Simulated Large Scale Freshwater Emergent Wetland

JOURNAL

Environmental Science & Technology

LABORATORY

Center for Environmental Implications about Nanotechnology (CEINT) at Duke University.

SILVER nanomaterial study (data record NR1038)

NANOMATERIAL STUDIES

Linking Measurements and Impacts

STUDY TYPE

• Biological: In Vivo

• Environmental: Soil, Water

STUDY CONDITIONS

Media: Water, Soil

 Media Properties 1: Natural soil, 63% sand 10% clay 26% silt

• Media Properties 2: Natural water

• Subjects: Mosquitofish; Plants

• Location: Simulated Field

 Exposure Summary: Acute/Chronic; absorption/dermal inhalation/oral;

• 0.025 mg/mL; 18 months

ASSAYS

- Laboratory:
- graphite furnace AA; ICP-MS;
- Acid leaching; Cline method; XAS
- Field: YSI probe; sediment coring;
- dialysis

SILVER nanomaterial study (data record NR1038)

Accelerating the Curation Process
Minimizing Error Propagation

CURATION TOOL

Systematic Data Archiving

A **DATA CURATION TOOL** facilitates the progression of nanomaterial entries through the curation process to the Nanomaterial Registry website

DATA ENTRY

 ✓ identifies, evaluates, and enters data

QUALITY ASSURANCE

✓ check for transcription errors

QUALITY CONTROL

✓ correct any errors
 or
 inconsistencies in
 the scientific
 interpretation

Systematic Data Archiving:

DATA CURATION TOOL

Data records are promoted through QUEUES

SEARCH and **SORT** options for data in queues

NANOMATERIALREGISTRY

Systematic Data Archiving:

DATA CURATION TOOL

✓ STEP 1: PCC "Particle Size" is selected from a list of the 12 MIAN PCCs

An example of SMART CURATION:

✓ Drop downs in data entry fields are populated with selection lists that are valid according to the fields already entered

✓ STEP 2: Measurement Type drop down is populated with options relevant to "Particle Size"

NAN MATERIAL REGISTRY

Systematic Data Archiving: DATA CURATION TOOL

Compliance Level

The Nanomaterial Registry's **COMPLIANCE LEVEL FEATURE** provides a **METRIC** on the **QUALITY** of characterization of a nanomaterial entry

[]					
Compliance Level	Score	Medal			
Gold	76-100	Y			
Silver	51-75				
Bronze	26-50				
Merit	0-25				
L					

COMPLIANCE
LEVELS are broken into
MERIT, BRONZE,
SILVER, and GOLD
and represent
increasing quality of
characterization based
on our evaluation
criteria

$$CL_{IPCC} = \sum_{i=1}^{M} \frac{W_i^{\vee}}{(M*N)}$$

A COMPLIANCE LEVEL SCORE is a quantitative value calculated by assigning a weight (W) to each value reported in the curated entry (M)

NAN©MATERIALREGISTRY

Compliance Level

COMPLIANCE LEVEL WEIGHTING FACTOR IS HIGHER WHEN:

- Terms with greater specificity are used
- Well-established techniques are used
- · Protocols are adequately described
- Standard protocols are used
- Values are measured with multiple techniques
- Good laboratory practices are reported

Example: Particle Size reported as

- Diameter
- Mean aerodynamic diameter

$$CL_{IPCC} = \sum_{i=1}^{M} \frac{W_i}{(M*N)}$$

Example:

- Instruments within calibration and proper controls were used
- replicate measurements were taken

NANOMATERIALREGISTRY

Compliance Level

Compliance Level on the Registry

COMPLIANCE LEVEL for individual characterizations are displayed

✓ On the SEARCH RESULTS page

✓ On the DETAILS PAGE

Compliance Level - work is ongoing

The COMPLIANCE LEVEL was designed as a FLEXIBLE tool

As terminology, standards, and techniques become relevant and/or obsolete, the terms and weighting factors behind the compliance level score can be updated.

algorithms can be tested on actual data sets

NANOMATERIALREGISTRY

THANK YOU!

www.nanomaterialregistry.org nanoregistry@rti.org

