DIFFERENT INTERACTIONS ON NANOSCALE

RECOGNITION, ACTIVE TRANSPORT

ACCUMULATION AND FATE

ENABLING AND REGULATING THE FUTURE

GLOBAL CONVERSATION AND COR

NANOPARTICLES ACT DIFFERENTLY FROM CHEMICALS

green 40nm PS particles red lysosomes

A549 cell and LysoTracker Red 30 min after 10 min pulse of 100 μ g/mL 40 nm green ps particles

They Travel on Highways, using the transport Process of Cell

Same system-4 hours later-many particles have reached lysosomes

Jez, Chris, Juan mattia

NEW SCIENCE

Chemicals Partition but Nanoparticles processed-energy of cell used

RECOGNITION

Nanoscale engages with intrinsic (endogenous) active cellular processes ; Such interactions invariably involve recognition especially of the in situ interface

Biological and Environmental Identity (Contextual)

cbni

'Hard Corona' **Common Nanoparticles surface** covered by proteins from surrounding

Monopoli, M..Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. J Am Chem Soc. February 2, 2011

Walczyk, D. J Am Chem Soc,(2010) 132, 5761-5768; Pitek et al. JACS 2011

Biological Identity derived from *in situ* Interface

•••

40m polystyrene

Recognition; the amount *and pathway* of cellular uptake determined corona (*in situ* interface)

Salvati et al Nature Nano 2012

FATE

Bio-accumulation Long Term, Repeated Dose 'Low Acute Toxicity'

•Biological processing at Nanoscale, recognition and accumulation

•Non-degradable or slowly degradable materials for long periods in new places in organisms and environment

IN ORGANISMS AND ENVIRONMENT

THE FUTURE-IS HERE

TIME TO MOVE ON, AND DEAL WITH ENORMOUS RANGE OF NEW MATERIALS?

Name These, Classify these

REGULATION FOR FUTURE A PRACTICAL WAY FORWARD?

VALUE CHAIN REGULATION-WITHOUT PREJUDICE?

GLOBAL CONVERSATIONS

- EXPOSED TO WHAT (EXACTLY) DURING LIFE CYCLE (COR1)
 - Characterization modifications from environment, formulation,
- FUTURE MATERIALS, NAME THEM, CLASSIFY PREDICTION
 - Predictors of biodistribution, fate (COR2,3)
 - Parameters of biodistribution, *useful* classification and organization of data, safety by design (COR5)
- ENABLING AND REGULATING THE FUTURE (COR6)
 - Risk Management, Risk Control to *enable* (safely)
 - Priviliged pathways of lowered risk