

Requirements for Reliable Exposure Assessment of ENM in Air

Scope & Content

- Type of particle related data required for reliable assessment
- NP characteristics ("metrics") responsible for effects on/in biological systems
- Metrics which are accessible today and which are not
- Correlation between aerosol metrics and toxicity data

The issue: reliable exposure assessment

Dose = concentration x time x lung deposition efficiency

• Respiratory deposition efficiency as a function of particle size generally well understood

ICRP 66 (1994)

What about concentration?

- Most simple case: material dissolves rapidly in tissue fluids
- Then particle concentration + chemical composition => toxic effect (not a "nano" issue)
- The metrics conundrum: number surface area mass concentration?
- Particle "functionality" with regard to specific biological effects
 - Particle morphology, catalytic activity, ROS activity etc.
 - The paradigm of "toxicity ~ particle concentration" is inoperable and outdated

NP "functionality" in biological systems and mechanistic pathways of noxious action

- Multidemensional space of effects and mechanisms
 - "Chemical" toxicity (on the molecular level simple case)
 - "Morphological" toxicity
 - Oxidative stress
 - Genotoxicity
 - Cytotoxicity

• Mechanistic pathways undoubtedly material specific

- Multitude of nanostructured materials
- For a given material, dose is of course concentration dependent

• In addition: particle size specific ("N - S - M")

- Deposition in the respiratory system
- After deposition: translocation, penetration of biological barriers
- (Particle morphology relevant for a limited number of species)

• Need material specific concentration and size distribution

Aerosol related metrics accessible today

Particle size & concentration readily and accurately measured on line

- Concentration in terms of number, surface area
- Concentration size resolved or within certain (e.g. "respirable") range
- Question of cost
- Part of NANODEVICE project: cost reduction for existing techniques
- Differentiation against ambient background aerosol on basis of size alone remains problematic
 - Possible technically to get around it by differential diagnostic tricks
 - Not a solution for monitoring
 - Part of NANODEVICE project: material or function specific techniques
- Particle chemical composition: sampling & off-line analysis
- Particle morphology: sampling & off-line analysis (TEM, SEM)

Ambient background aerosols

Courtesy L. Morawska

Large variability also of industrial NP sources

Highly aggregated "free" TiO₂ average XRD-size = 19 nm

Need for exposure information specific to material, function and morphology

- Direct measurement of nanoaerosol size and concentration masked by background
- Chemical composition/concentration not rapidly accessible (off-line sampling and analysis)
- Chemical composition/concentration not sufficient for assessment
 - Particle "functionality" *≠* particle concentration
 - Examples on following slides
 - Particle functionality with regard to specific biological effects ??

Structure vs. (catalytic) function of ENP

Structural change vs. catalytic activity

Activity vs. structure for constant aerosol mass

Catalytic Activity Aerosol Monitor (CAAM)

		Detection Limit ¹⁾	Sampling time ²⁾
Pd	C_2H_4 hydration	2 ng	< 1 s
Ni	CO methanisation	1.6 µg	< 10 s
Pt	H ₂ oxidation	2.2 µg	<14 s
Fe ₂ O ₃	CO oxidation	28 µg	< 3 min

¹⁾ assuming 10 ppm detection limit for FTIR

²⁾ assuming 1 mg/m³ concentration and 10 L/min sampling rate

Neubauer et al. (2011) Journal of Physics Neubauer et al. (2012) J. Occup. Hyghiene

A suitable metric for "catalytic activity" in the context of risk assessment

- Instead of activity per mass or surface area of catalyst *Turn-Over Frequency* [s⁻¹] CAAM measures activity per m³ of air
- Another challenge: Connect reactivity of NP in aerosol phase with in-vitro biological reactivity

- What we can measure today, we can measure very accurately, but the information is insufficient for assessment
- Critical NP properties not accessible in real time, at best with laborious off-line techniques
- Need for more material/function specific information (Also need more biological effects related info !) Major effort from both toxicology and aerosol science
- As we are designing more and more intelligent nanomaterials, our measurement and assessment techniques should be at least as intelligent as the particles !