A Risk Forecasting Framework for Nanomaterials

MARK R. WIESNER

wiesner@duke.edu

US-EU Collaborations in NanoEHS 10-11 March 2011

CENTER FOR THE ENVIRONMENTAL IMPLICATIONS OF NANOTECHNOLOGY (CEINT)

- 1. Elucidate general principles that determine environmental behavior of nanomaterials
- 2. Provide guidance in assessing existing and future concerns
- 3. Educate students and the general public regarding nanotechnology, nanoscale science, and the environment
- Core Institutions: Duke (headquarters), CMU, Howard, Virginia Tech, U Kentucky, Stanford
- 36 faculty, 76 undergraduate and graduate students
- Collaborating US universities & government entities
- ICEINT- International partners (France) supported by CNRS and CEA
- TINE (UK- Rothamsted, Cranfield, Lancaster, NERC CEH), ENPRA (IOM)

Research Themes

exposure

hazard

exposure

Modeling, Risk assessment, Tools for risk management

MESOCOSMS

- ●26 mesocosms constructed, planted
- **OProbes, data acquisition, and web-based data** *monitorin*
- Webcam
- Preliminary experiment started Oct '09
- First duplicated experiment with Ag NPs to begin May- June 2010

EXAMPLE: TIO2 EXPOSURE VIA

*ecosystem impacts

vector describing nanoparticle characteristics

vector describing system (wastewater treatment plant, mesocosm)

Source inventory (per time) commercialization trends

usage profile

*social science

*engineering

Partitioning transfer function

*physical chemical properties

*transport

*microbiology

Bayesian networks

A NANOPARTICLE IS: 1) SMALL 2) HAS NOVEL PROPERTIES

DESIRABLE ELEMENTS OF A RISK FORECASTING FRAMEWORK

- 1) GENERATES FORECASTS AND ASSOCIATED LEVELS OF UNCERTAINTY FOR QUESTIONS OF IMMEDIATE CONCERN
- 2) INCORPORATES FUNDAMENTAL PROPERTIES OF NANOMATERIALS WITH GOAL OF FORECASTING RISK FOR NEW MATERIALS
- 3) CONSIDERS ALL PERTINENT SOURCES OF NANOMATERIALS
- 4) INCLUDES LIFE-CYCLE AND ECOSYSTEM-LEVEL IMPACTS
- 5) ABILITY TO ADAPT AND UPDATE RISK FORECASTS AS NEW INFORMATION BECOMES AVAILABLE
- 6) FEEDBACK TO IMPROVE INFORMATION GATHERING
- 7) FEEDBACK TO IMPROVE NANOMATERIAL DESIGN

RISK ASSESSMENT FRAMEWORK

MULTIPLE SOURCES, MULTI-SCALE IMPACTS

AGGREGATION MAY OCCUR BETWEEN MANY COMPONENTS

TRANSFER FUNCTION

NANOMATERIAL FABRICATION ESTIMATES

Product	Lower bound (tpy)	Upper bound (tpy)
nano-TiO ₂	7,800	38,000
nano-Ag	2.8	20
nano-CeO ₂	35	700
CNT	55	1101
Fullerenes	2	80

C. HENDREN, WIESNER AND CO-WORKERS, IN REVIEW

PARTITIONING EXPERIMENTS

MONTE CARLO CALCULATIONS OF SLUDGE CONCENTRATIONS

THANK YOU

ICEIN 2011

May 9- 11
Duke University
Durham, NC

