

Theory, Simulation and Modeling

Pablo Ordejón, Director Institut Catalá de Nanociència i Nanotecnologia - ICN2

Barcelona, Spain - pablo.ordejon@icn.cat

- In which areas the multi-scale and multi-physics approach is the most advanced and could lead to a versatile multi-purpose modelling platform?
 - Advanced (Nano) Materials Devices
 - Bio Nano interface
 - Interaction of nanostructures with light (and other excitations: photons, plasmons, phonons)
- On which of the grand societal challenges would this modelling platform have the largest impact?
 - Energy
 - ICT
 - Environment and Safety (Nanoparticles, chemicals)
 - Health
- In which areas a EU-US collaboration is most likely to be successful in the short to mid-term?
 - Code Standards Interoperability Libraries of tools I/O standards Passing info between scales
 - Defining protocols for databases, and sharing contents of computed materials properties
 - Exploiting Petascale and future (?) Exascale computers

us eu

bridging research efforts

An example: The Materials Project

A Database of Materials Properties from a massive set of Ab-Initio calculations (MIT)

US eu bridging research efforts

US - EU Collaboration

• Europe is very strong in Development of Materials Simulation Codes ("ab-initio": CP2K, VASP, SIESTA, WIEN2K...), with very successful Long-Term Collaborative Networks

INTELBIOMAT

• US is very strong in methodological development and final applications to grand societal challenges

Materials Genome Initiative

- Possibilities for collaboration:
 - Code Standards Interoperability Libraries of tools I/O standards Passing info between scales
 - Defining protocols for databases, and sharing contents of computed materials properties
 - Exploiting Petascale and future (?) Exascale computers